版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮南市谢家集区2024年八年级数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二次根式中,字母a的取值范围是()A.a<﹣ B.a>﹣ C.a D.a2.在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD的周长是()A.20 B.40 C.24 D.483.若式子的值等于0,则x的值为()A.±2 B.-2 C.2 D.-44.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时5.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.86.下列各式能利用完全平方公式分解因式的是()A. B. C. D.7.关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,则k的取值范围()A. B.且k≠0 C. D.且k≠08.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分B.测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等9.如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为()A. B. C. D.10.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm二、填空题(每小题3分,共24分)11.如图,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是_________.12.如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.13.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.14.若,则关于函数的结论:①y随x的增大而增大;②y随x的增大而减小;③y恒为正值;④y恒为负值.正确的是________.(直接写出正确结论的序号)15.如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.16.已知一次函数,当时,对应的函数的取值范围是,的值为__.17.如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.18.如果一个多边形的每一个内角都是120°,那么这个多边形是____.三、解答题(共66分)19.(10分)猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②20.(6分)计算(1)(﹣)0++|2﹣|(2)(﹣)÷+(2+)(2﹣)21.(6分)已知一次函数图象经过点(3,5),(-4,-9)两点.(1)求一次函数解析式;(2)求这个一次函数图象和x轴、y轴的交点坐标.22.(8分)已知一次函数图像过点P(0,6),且平行于直线y=-2x(1)求该一次函数的解析式(2)若点A(,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。23.(8分)已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数于点(2,a),求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.24.(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.25.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?26.(10分)某校为了解全校学生下学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:活动次数x频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤12mb12<x≤1540.0815<x≤182n根据以上图表信息,解答下列问题:(1)表中a=___,b=___;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1500名学生,请估计该校在下学期参加社区活动超过6次的学生有多少人?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据二次根式以及分式有意义的条件即可解答.【详解】根据题意知2a+1>0,解得:a>﹣,故选B.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式与分式有意义的条件,本题属于基础题型.2、A【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB==5,故菱形的周长为4×5=20.故选A.【点睛】此题考查菱形的性质,解题关键在于利用勾股定理进行计算.3、C【解析】=0且x²+4x+4≠0,解得x=2.故选C.4、B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图5、A【解析】试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除.故答案选A.考点:等腰三角形的判定;坐标与图形性质.6、B【解析】
根据完全平方公式的特点逐一判断以上选项,即可得出答案.【详解】(1)不符合完全平方公式的特点,故本选项错误;(2)=,故本选项正确;(3)不符合完全平方公式的特点,故本选项错误;(4)不符合完全平方公式的特点,故本选项错误。因此答案选择B.【点睛】本题考查的是利用完全平方公式进行因式分解,重点需要掌握完全平方公式的特点:首尾皆为平方的形式,中间则是积的两倍.7、B【解析】
根据一元二次方程的定义和根的判别式得出k≠0且△=(-3)2-4k×1>0,求出即可.【详解】∵关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,∴k≠0且△=(-3)2-4k×1>0,解得:k<且k≠0,故选B.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.8、D【解析】
根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.【点睛】本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.9、B【解析】
根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,根据三角形的内角和即可得到结论.【详解】解:在正方形中,∠DAC=∠ACD=45∘,由作图知,∠CAP=∠DAP=22.5°,∴∠P=180°−∠ACP−∠CAP=22.5°,故选B.【点睛】本题考察了正方形的性质,掌握正方形的对角线平分对角是解题的关键.10、C【解析】
首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20cm,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.二、填空题(每小题3分,共24分)11、21【解析】
连接BD交AC于点O,已知AC即可求AO,菱形对角线互相垂直,所以△AOB为直角三角形,根据勾股定理即可求BO的值,即可求BD的值,根据AC、BD可以求菱形ABCD的面积.【详解】如图,连接BD交AC于点O.∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∵AC=8,∴AO=1.在Rt△AOB中,BO3,∴BD=2BO=6,∴菱形ABCD的面积为S6×8=21.故答案为:21.【点睛】本题考查了菱形的性质,勾股定理.根据勾股定理求BO的值是解题的关键.12、20【解析】
先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.【详解】因为,四边形ABCD是菱形,所以,AD=AB,因为,AE:AD=3:5,所以,AE:AB=3:5,所以,AE:BE=3:2,因为,BE=2,所以,AE=3,AB=CD=5,所以,DE=,所以,菱形ABCD的面积是AB∙DE=5×4=20故答案为20【点睛】本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.13、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.14、①③【解析】
根据题意和正比例函数的性质可以判各个小题中的结论是否正确,本题得以解决.【详解】解:,函数,y随x的增大而增大,故①正确,②错误;当时,,故③正确,④错误.故答案为:①③.【点睛】本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.15、【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.【详解】设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:所以解得,所以AE=.考点:1.菱形的性质;2.勾股定理.16、4.【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.【详解】当时,随的增大而减小,即一次函数为减函数,当时,,当时,,代入一次函数解析式得:,解得,故答案为:4.【点睛】本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.17、4.【解析】
先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.【详解】解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,∴四边形EFGH是矩形,边接AC,则AC=BD=4,又∵EH是△ABD的中位线,∴EH=BD=2,同理EF=AC=2,∴四边形EFGH的面积为2×2=4.故答案为4.【点睛】本题考查了正方形的性质,矩形的判定,三角形中位线定理.18、六边形.【解析】依据多边形的内角和公式列方程求解即可.解:180(n﹣2)=120°n解得:n=1.故答案为:六边形.三、解答题(共66分)19、猜想与证明:猜想DM与ME的数量关系是:DM=ME,证明见解析;拓展与延伸:(1)DM=ME,DM⊥ME;(2)证明见解析【解析】
猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC,AC和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【详解】解:猜想与证明:猜想DM与ME的数量关系是:DM=ME.证明:如图①,延长EM交AD于点H.①∵四边形ABCD、四边形ECGF都是矩形,∴AD∥BG,EF∥BG,∠HDE=90°.∴AD∥EF.∴∠AHM=∠FEM.又∵AM=FM,∠AMH=∠FME,∴△AMH≌△FME.∴HM=EM.又∵∠HDE=90°,∴DM=EH=ME;(1)∵四边形ABCD和CEFG是正方形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
,∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
∵四边形ABCD和CEFG是正方形,
∴AD=CD,CE=EF,
∵△FME≌△AMH,
∴EF=AH,
∴DH=DE,
∴△DEH是等腰直角三角形,
又∵MH=ME,故答案为:DM=ME,DM⊥ME;(2)证明:如图②,连结AC.②∵四边形ABCD、四边形ECGF都是正方形,∴∠DCA=∠DCE=∠CFE=45°,∴点E在AC上.∴∠AEF=∠FEC=90°.又∵点M是AF的中点,∴ME=AF.∵∠ADC=90°,点M是AF的中点,∴DM=AF.∴DM=ME.∵ME=AF=FM,DM=AF=FM,∴∠DFM=(180°-∠DMF),∠MFE=(180°-∠FME),∴∠DFM+∠MFE=(180°-∠DMF)+(180°-∠FME)=180°-(∠DMF+∠FME)=180°-∠DME.∵∠DFM+∠MFE=180°-∠CFE=180°-45°=135°,∴180°-∠DME=135°.∴∠DME=90°.∴DM⊥ME.【点睛】本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.20、(1)﹣;(2)1.【解析】
(1)此题涉及零次幂、开立方和绝对值3个考点,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先计算括号里面二次根式的减法,再计算括号外的乘除,最后计算加减即可.【详解】解:(1)原式=1﹣3+2﹣=﹣;(2)原式=(5﹣4)÷+4﹣5=÷+4﹣5=1+4﹣5=1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21、(1)直线的解析式是y=2x-1;(2)与y轴交点(0,-1),与x轴交点.【解析】分析:(1)设函数解析式为y=kx+b,利用待定系数法可求得k、b的值,可求得一次函数解析式;(2)分别令x=0和y=0,可求得图象与y轴和x轴的交点坐标.详解:(1)设一次函数解析式为y=kx+b(k≠0),把点(3,5),(﹣4,﹣9)分别代入解析式可得:,解得:,∴一次函数解析式为y=2x﹣1;(2)当x=0时,y=﹣1,当y=0时,2x﹣1=0,解得:x=,∴函数图象与坐标轴的交点为(0,﹣1),(,0).点睛:本题主要考查待定系数法求函数解析式,掌握函数图象上的点的坐标满足函数解析式是解题的关键.22、(1)y=-2x+6(2)答案见解析【解析】
(1)根据两一次函数图像平行,可得到k的值相等,因此设一次函数解析式为y=-2x+b,再将点P的坐标代入函数解析式就可求出b的值,就可得到函数解析式;(2)利用一次函数的性质:k<0时,y随x的增大而减小,比较点A,B的横坐标的大小,就可求得a,b的大小关系【详解】(1)解:∵一次函数图像过点P(0,6),且平行于直线y=-2x,∴设这个一次函数解析式为y=-2x+b∴b=6∴该一次函数解析式为y=-2x+6;(2)解:∵一次函数解析式为y=-2x+6,k=-2<0∴y随x的增大而减小;∵点A(,a)、B(2,b)在该函数图像上且,∴a>b【点睛】此题主要考查了一次函数的图象和性质,关键是掌握一次函数图象平行时,k值相等.23、(1)a=1;(2)k=2,b=-3;(3).【解析】
(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a的值;(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b的值;(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x轴的交点即可.【详解】(1)由题知,把(2,a)代入y=x,解得a=1;(2)由题意知,把点(-1,-5)及点(2,a)代入一次函数解析式,得:,又由(1)知a=1,解方程组得到:k=2,b=-3;(3)由(2)知一次函数解析式为:y=2x-3,y=2x-3与x轴交点坐标为(,0)∴所求三角形面积S=×1×=.【点睛】本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,是基础题型.24、(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】
(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.25、(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时,A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44083.4-2024道路车辆儿童约束系统以及与车辆固定系统配装的使用性评价方法和规则第4部分:增高椅和增高垫
- 生产加工合同书范本(35篇)
- 房屋购房合同
- 设备供货服务合同签订规范
- 设备采购及安装合同
- 设计项目进度跟踪
- 语文学习攻略与经验
- 财产抵押借款协议模板
- 购房补充协议的撰写要点
- 购销合同中的税收风险分析
- SF∕T 0111-2021 法医临床检验规范
- 水闸维修养护技术规程-共89页PPT课件
- 乳腺癌前哨淋巴结活检研究进展
- 部编版三年级下册语文学情分析(每一课都有)
- 国家开放大学计算机应用基础(本) 终结性考试试题及参考答案
- 征地拆迁审计讲义
- LANTEK兰特钣金软件手册(下)
- 供水管道工程施工组织设计
- 国家开放大学《药物治疗学》形考任务1-4参考答案
- 人教版一年级上册数学期中测试题 (2)
- 行政许可法课件
评论
0/150
提交评论