2024届贵州省六盘水市六枝特区第九中学八年级下册数学期末预测试题含解析_第1页
2024届贵州省六盘水市六枝特区第九中学八年级下册数学期末预测试题含解析_第2页
2024届贵州省六盘水市六枝特区第九中学八年级下册数学期末预测试题含解析_第3页
2024届贵州省六盘水市六枝特区第九中学八年级下册数学期末预测试题含解析_第4页
2024届贵州省六盘水市六枝特区第九中学八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省六盘水市六枝特区第九中学八年级下册数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.测得某人一根头发的直径约为0.0000715米,该数用科学记数法可表示为()A.0.715×104 B.0.715×10﹣4 C.7.15×105 D.7.15×10﹣52.对某班学生在家里做家务的时间进行调查后,将所得的数据分成4组,第一组的频率是0.16,第二、三组的频率之和为0.74,则第四组的频率是()A.0.38 B.0.30 C.0.20 D.0.103.学校举行演讲比赛,共有15名同学进入决赛,比赛将评出金奖1名,银奖3名,铜奖4名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的()A.平均数 B.中位数 C.众数 D.方差4.如图是某件商晶四天内的进价与售价的折线统计图.那么售出每件这种商品利润最大的是()A.第一天 B.第二天 C.第三天 D.第四天5.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B.1 C. D.6.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.07.如图是一次函数(、是常数)的图象,则不等式的解集是()A. B.C. D.8.如图,菱形的边长为是边的中点,是边上的一个动点,将线段绕着逆时针旋转,得到,连接,则的最小值为()A. B. C. D.9.一次函数的图象经过原点,则的值为()A. B. C. D.10.下列多项式中能用完全平方公式分解的是()A.x2-x+1 B.a2+a+ C.1-

2x+x2 D.-a2+b2-2ab11.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去20012.下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.14.在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.15.如图,已知,AD平分于点E,,则BC=___cm。16.已知点,,直线与线段有交点,则的取值范围是______.17.如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.18.若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,那么称点P是线段AB的“附近点”.(1)请判断点D(4.5,2.5)是否是线段AB的“附近点”;(2)如果点H(m,n)在一次函数的图象上,且是线段AB的“附近点”,求m的取值范围;(3)如果一次函数y=x+b的图象上至少存在一个“附近点”,请直接写出b的取值范围.20.(8分)计算或化简:(1)计算:(2)先化简,再求值:,其中.21.(8分)如图,在平面直角坐标系中,直线,与反比例函数在第一象限内的图象相交于点(1)求该反比例函数的表达式;(2)将直线沿轴向上平移个单位后与反比例函数在第一象限内的图象相交于点,与轴交于点,若,连接,.①求的值;②判断与的位置关系,并说明理由;(3)在(2)的条件下,在射线上有一点(不与重合),使,求点的坐标.22.(10分)如图,是矩形对角线的交点,,.(1)求证:四边形是菱形;(2)若,,求矩形的面积.23.(10分)下表是随机抽取的某公司部分员工的月收入资料.(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平。24.(10分)(1)计算:;(2)已知,,求的值25.(12分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.26.甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?

参考答案一、选择题(每题4分,共48分)1、D【解析】0.0000715=,故选D.2、D【解析】

根据各组频率之和为1即可求出答案.【详解】解:第四组的频率为:,故选:.【点睛】本题考查频率的性质,解题的关键是熟练运用频率的性质,本题属于基础题型.3、B【解析】

根据进入决赛的15名学生所得分数互不相同,所以这15名学生所得分数的中位数即是获奖的学生中的最低分,所以某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,据此解答即可.【详解】解:∵进入决赛的15名学生所得分数互不相同,共有1+3+4=8个奖项,∴这15名学生所得分数的中位数即是获奖的学生中的最低分,∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖.故选B.【点睛】此题主要考查了统计量的选择,要熟练掌握,解答此题的关键是要明确:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,属于基础题,难度不大.4、B【解析】

根据利润=售价-进价和图象中给出的信息即可得到结论.【详解】解:由图象中的信息可知,利润=售价-进价,利润最大的天数是第二天.故选:B.【点睛】本题考查折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价-进价是解题的关键.5、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、A【解析】

分式方程无解有两种可能,一种是转化为的整式方程本身没有解,一种是整式方程的解使分式方程的分母为0.【详解】原式可化为,因为分式方程无解,即等式不成立或无意义,当时,方程无意义,代入求得.【点睛】理解无解的含义是解题的关键.7、B【解析】

根据一次函数图像与不等式的性质即可求解.【详解】∵一次函数与x轴的交点横坐标为-2,∴不等式的解集为故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数与不等式的关系.8、B【解析】

取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=2,BC=4,求EC的长.【详解】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,EB=2,BC=4,∴EC=2,故选A.【点睛】本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.9、B【解析】分析:根据一次函数的定义及函数图象经过原点的特点,求出m的值即可.详解:∵一次函数的图象经过原点,∴m=1.故选B.点睛:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b(k≠1)中,当b=1时函数图象经过原点.10、C【解析】

根据完全平方公式判断即可.()【详解】根据题意可以用完全平方公式分解的只有C选项.即C选项故选C.【点睛】本题主要考查完全平方公式,是常考点,应当熟练掌握.11、D【解析】

由中位数、众数、平均数及方差的意义逐一判断可得.【详解】解:A.前一组数据的中位数是200,正确,此选项不符合题意;B.前一组数据的众数是200,正确,此选项不符合题意;C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;D.后一组数据的方差等于前一组数据的方差,此选项符合题意;故选D.【点睛】本题考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.12、B【解析】

利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【详解】解:①对角线互相垂直的四边形不一定是菱形,故①错误;

②矩形的对角线相等且互相平分,故②错误;

③对角线相等的四边形不一定是矩形,故③错误;

④对角线相等的菱形是正方形,故④正确,

⑤邻边相等的矩形是正方形,故⑤正确

故选B.【点睛】本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.二、填空题(每题4分,共24分)13、5【解析】

根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.【详解】解:由题意可知,1+3+x+4+5+6=4×6,解得:x=5,所以这组数据的众数是5.故答案为5.【点睛】此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.14、3或1.【解析】

由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是D,A,C在同一条直线上,可分别求出CP的长度.【详解】解:∵AC=BC=10,

∴∠CAB=∠CBA,

由旋转的性质知,△ACB≌△AED,

∴AE=AC=10,∠CAB=∠EAD=∠CBA,

①∵∠DAF=∠CBA,

∴∠DAF=∠EAD,

∴A,F,E三点在同一直线上,如图1所示,

过点C作CH⊥AB于H,

则AH=BH=AB=7,

∵EP⊥AC,

∴∠EPA=∠CHA=90°,

又∵∠CAH=∠EAP,CA=EA,

∴△CAH≌△EAP(AAS),

∴AP=AH=7,

∴PC=AC-AP=10-7=3;

②当D,A,C在同一条直线上时,如图2,

∠DAF=∠CAB=∠CBA,

此时AP=AD=AB=7,

∴PC=AC+AP=10+7=1.

故答案为:3或1.【点睛】本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.15、1【解析】

过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,然后求出CD、BD的长度,即可得解.【详解】解:如图,过点D作DE⊥AB于E,

∵点D到AB的距离等于5cm,

∴DE=5cm,

∵AD平分∠BAC,∠C=90°,

∴DE=CD=5cm,

∵BD=2CD,

∴BD=2×5=10cm,

∴BC=CD+BD=5+10=1cm.

故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.16、﹣1≤m≤1.【解析】

分别把点,代入直线,求得m的值,由此即可判定的取值范围.【详解】把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.故答案为:﹣1≤m≤1.【点睛】本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.17、【解析】

先根据直线的解析式求出点F的坐标,从而可得OF、CF的长,再根据矩形的性质、OC的长可得点E的横坐标,代入直线的解析式可得点E的纵坐标,从而可得CE的长,然后根据直角三角形的面积公式即可得.【详解】对于一次函数当时,,解得即点F的坐标为四边形OABC是矩形点E的横坐标为4当时,,即点E的坐标为则的面积是故答案为:.【点睛】本题考查了一次函数的几何应用、矩形的性质等知识点,利用一次函数的解析式求出点E的坐标是解题关键.18、【解析】

根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴,整理得,,∴当时,故答案为:.【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.三、解答题(共78分)19、(1)点D(4.5,2.5)是线段AB的“附近点”;(2)m的取值范围是;(3)b的取值范围是【解析】(1)点P是线段AB的“附近点”的定义即可判断.(2)首先求出直线y=x-2与线段AB交于(,3)分①当m≥时,列出不等式即可解决问题.(3)如图,在Rt△AMN中,AM=1,∠MAN=45°,则点M坐标(2-,3+),在Rt△BEF中,BE=1,∠EBF=45°,则点E坐标(6+,3-),分别求出直线经过点M点E时的b的值,即可解决问题.解:(1)∵点D到线段AB的距离是0.5,∴0.5<1,∴点D(4.5,2.5)是否是线段AB的“附近点”;(2)∵点H(m,n)线段AB的“附加点”,点H(m,n)在直线y=x-2上,∴n=m-2;直线y=x-2线段AB交于(,3).①当m≥时,有n=m-2≥3,又AB∥x轴,∴此时点H(m、n)到线段AB的距离是n-3.∴0≤n-3,∴≤m≤5.综上所述,≤m≤5.(3)如图,在Rt△AMN中,AM=1,∠MAN=45°,则点M坐标(2-,3+),在Rt△BEF中,BE=1,∠ENF=45°,则点E坐标(6+,3-),当直线y=x+b经过点M时,b=1+,当直线y=x+b经过点E时,b=-3-,∴-3-≤b≤1+.“点睛”本题考查一次函数综合题、线段AB的“附近点”的定义等知识,解题的关键是理解题意,学会分类讨论,学会利用特殊点解决问题,属于中档压轴题.

20、(1)1;(2)2【解析】

(1)根据负整数指数幂、绝对值、零指数幂可以解答本题;(2)根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:(1)原式=;(2)====,把代入,得:原式=【点睛】本题考查分式的化简求值、负整数指数幂、绝对值、零指数幂,解答本题的关键是明确它们各自的计算方法.21、(1);(2)①;②;(3).【解析】

(1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;

(2)①先求出点B坐标即可得出结论;②利用勾股定理的逆定理即可判断;

(3)利用相似三角形的性质得出AP,进而求出OP,再求出∠AOH=30°,最后用含30°的直角三角形的性质即可得出结论.【详解】解:(1)∵点在直线,∴,∴,∴点,∵点在反比例函数上,∴,∴;(2)①作轴于,轴于.∴,∵,∴,∴,∴,∴,∴,∴,∴设的解析式为,∵经过点,∴.∴直线的解析式为,∴.②∵,,∴,,,∴,∴,∴.(3)如图∵,,由(2)知,,即,∴,∵,∴,过点作轴于∵,∴,,在中,∴,∴过点作轴于,在中,,,∴,,∴.【点睛】此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数的意义,相似三角形的性质,含30°角的直角三角形的性质,解(1)的关键是求出点A的坐标,解(2)的关键是求出点B的坐标,解(3)的关键是求出OP,是一道中等难度的中考常考题.22、(1)见解析;(2)【解析】

(1)先证明四边形OCED是平行四边形,再证明OD=OC,根据一组邻边相等的平行四边形是菱形进行判定;

(2)结合题意,根据∠AOD=120°得到为等边三角形,推导出,再结合题意得到AC=6,利用勾股定理求出AD长,矩形面积=AD×CD.【详解】(1),,四边形是平行四边形.是矩形的对角线的交点,,平行四边形是菱形;(2),,为等边三角形,故.,,,,故矩形.【点睛】本题考查平行四边形的性质和判定、菱形的性质和判定以及勾股定理,解题的关键是掌握平行四边形的性质和判定、菱形的性质和判定以及勾股定理.23、(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.【解析】

(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;

(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入,乙推断比较科学合理.【详解】解:(1)样本的平均数为:=6150元;这组数据共有26个,第13、14个数据分别是3000、3400,所以样本的中位数为:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.故答案为:(1)平均数:6150元;中位数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论