版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届威海市古寨中学八年级下册数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是().A.y1+y2>0 B.y1+y2<0 C.y1-y2>0 D.y1-y2<02.如图,已知正方形ABCD的边长为5,E为BC边上的一点,∠EBC=30°,则BE的长为()A.cm B.2cm C.5cm D.10cm3.某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务,根据题意,下列方程正确的是()A. B.C. D.4.在分式中,的取值范围是()A. B. C. D.5.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.286.已知a>b,c≠0,则下列关系一定成立的是().A.ac>bc B. C.c-a>c-b D.c+a>c+b7.若关于的一元二次方程有解,则的值可为()A. B. C. D.8.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1C.(x+3)2=19 D.(x﹣3)2=199.如图,在菱形ABCD中,DE⊥AB,=,BE=2,则tan∠DBE的值()A. B.2 C. D.10.下列二次根式中是最简二次根式的为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将△ABC向右平移到△DEF位置,如果AE=8cm,BD=2cm,则△ABC移动的距离是___.12._____.13.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.14.如图,如果一次函数y=kx+b与反比例函数y=6xx>0的图象交于Am,6,Bn,315.反比例函数与一次函数图象的交于点,则______.16.若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.17.抛物线,当时,的取值范围是__________.18.点A(a,b)是一次函数y=x+2与反比例函数的图像的交点,则__________。三、解答题(共66分)19.(10分)如图,已知某学校A与笔直的公路BD相距3000米,且与该公路上的一个车站D距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?20.(6分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)求出太阳花的付款金额(元)关于购买量(盆)的函数关系式;(2)求出绣球花的付款金额(元)关于购买量(盆)的函数关系式;(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?21.(6分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?22.(8分)已知一次函数y1=﹣1x﹣3与y1=x+1.(1)在同一平面直角坐标系中,画出这两个函数的图象;(1)根据图象,不等式﹣1x﹣3>x+1的解集为多少?(3)求两图象和y轴围成的三角形的面积.23.(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?24.(8分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为(单位:吨/小时),卸完这批货物所需的时间为(单位:小时).(1)求关于的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?25.(10分)如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点E,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.26.(10分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求m和b的数量关系;(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据k<1,正比例函数的函数值y随x的增大而减小解答.∵直线y=kx的k<1,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>1.考点:(1)、一次函数图象上点的坐标特征;(2)、正比例函数的图象.2、D【解析】试题解析:设根据勾股定理,故选D.3、A【解析】
关键描述语是:实际平均每天比原计划多制作了10个,根据等量关系列式.【详解】解:设原计划x天完成,根据题意可得:,故选:A.【点睛】此题考查分式方程的应用,涉及的公式:工作效率=工作量÷工作时间,解题时找到等量关系是列式的关键4、A【解析】
根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x-1≠0,解得x≠1.故选A.【点睛】本题考查的是分式有意义的条件,解题的关键是掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5、D【解析】
首先根据题意求出的长度,然后利用菱形的性质以及勾股定理的知识求出的值,最后结合三角形的面积公式即可求出答案.【详解】解:四边形是菱形,,,菱形的周长为24,,,,,,,菱形的面积三角形的面积,故选D.【点睛】本题主要考查了菱形的性质,解题的关键是利用菱形的性质以及勾股定理的知识求出的值.6、D【解析】
根据不等式的基本性质一一判断可得答案.【详解】解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误;B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即.故本选项错误;C、在不等式a>b的两边同时乘以负数-1,则不等号的方向发生改变,即-a<-b;然后再在不等式的两边同时加上c,不等号的方向不变,即c-a<c-b.故本选项错误;D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确.故选D.【点睛】本题主要考查的是不等式的基本性质.不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.即如果a>b,那么ac>bc;不等式的性质2:不等式两边乘(或除)以同一个正数,不等号的方向不变.即如果a>b,c>0,那么ac>bc或(>);不等式的性质3:不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac<bc或(<).7、A【解析】
根据判别式的意义得到△,然后解不等式求出的范围后对各选项进行判断.【详解】解:根据题意得:△,解得.故选:.【点睛】本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.8、D【解析】
方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:,配方得:,即,故选D.9、B【解析】
试题解析:设AE=3x,∵∴BE=5x−3x=2x=2,∴x=1,∴AD=5,AE=3,故选B.10、B【解析】
根据最简二次根式的定义进行解答即可.【详解】解:根据最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”可知,选项A、C、D中的二次根式都不是最简二次根式,只有B中的二次根式是最简二次根式.【点睛】本题考查的是最简二次根式的定义,掌握最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”是解题的关键.二、填空题(每小题3分,共24分)11、3cm.【解析】
根据平移的性质,对应点间的距离等于平移距离求出AD、BE,然后求解即可.【详解】∵将△ABC向右平移到△DEF位置,∴BE=AD,又∵AE=8cm,BD=2cm,∴AD=cm.∴△ABC移动的距离是3cm,故答案为:3cm.【点睛】本题考查了平移的性质,熟记对应点间的距离等于平移距离是解题的关键.12、【解析】
原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.13、3或7【解析】分两种情况:(1)当AE交BC于点E时;在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC∴∠AEB=∠EAD,∵∠DAB的平分线交BC于E,∴∠AEB=∠BAE,∴∠AEB=∠BAE,∴AB=BE,设AD=x,z则BE=x-2=5∴AD=5+2=7cm,(2)当AE交BC于点E,交CD于点F∵ABCD为平行四边形,∴AB=DC=5cm,AD=BC,AD∥BC.∴∠E=∠EAD,又∵BE平分∠BAD,∴∠EAD=∠EAB,∴∠EAB=∠E,∴BC+CE=AB=5,∴AD=BC=5−2=3(cm).故答案为3或7点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.14、1<x<2【解析】
先求出m,n的值,再观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可.【详解】∵点A(m,6)、B(n,3)在函数y=6∴m=1,n=2,∴A点坐标是(1,6),B点坐标是(2,3),观察图象可知,x的取值范围是1<x<2.故答案为:1<x<2.【点睛】本题考查一次函数与反比例函数的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题,属于中考常考题型.15、-1【解析】试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.考点:待定系数法求反比例函数解析式16、【解析】
设这个一次函数的表达式y=-1x+b,把代入即可.【详解】设这个一次函数的表达式y=-1x+b,把代入,得-4+b=-1,∴b=3,∴.故答案为:.【点睛】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了待定系数法.17、【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴,判断范围内函数的增减性,进而计算y的范围.【详解】解:根据二次函数的解析式可得由a=2>0,可得抛物线的开口向上对称轴为:所以可得在范围内,二次函数在,y随x的增大而减小,在上y随x的增大而增大.所以当取得最小值,最小值为:当取得最大值,最大值为:所以故答案为【点睛】本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.18、-8【解析】
把点A(a,b)分别代入一次函数y=x-1与反比例函数,求出a-b与ab的值,代入代数式进行计算即可.【详解】∵点A(a,b)是一次函数y=x+2与反比例函数的交点,∴b=a+2,,即a−b=-2,ab=4,∴原式=ab(a−b)=4×(-2)=-8.【点睛】反比例函数与一次函数的交点问题,对于本题我们可以先分别把点代入两个函数中,在对函数和所求的代数式进行适当变形,然后整体代入即可.三、解答题(共66分)19、3125米【解析】试题分析:由勾股定理先求出BD的长度,然后设超市C与车站D的距离是x米,分别表示出AC、BC、的长度,对Rt△ABC由勾股定理列方程求解.试题解析:在Rt△ABD中,BD==4000米,设超市C与车站D的距离是x米,则AC=CD=x米,BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米.点睛:本题关键在于设未知数,列方程求解.20、(1):y1=6x;(2)y2=;(3)太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元【解析】
(1)根据总价=单价×数量,求出太阳花的付款金额y1(元)关于购买量x(盆)的函数解析式;(2分两种情况:①一次购买的绣球花不超过20盆;②一次购买的绣球花超过20盆;根据总价=单价×数量,求出绣球花的付款金额y2(元)关于购买量x(盆)的函数解析式即可;(3)首先太阳花数量不超过绣球花数量的一半,可得太阳花数量不超过两种花数量的,即太阳花数量不超过30盆,所以绣球花的数量不少于60盆;然后设太阳花的数量是x盆,则绣球花的数量是90-x盆,根据总价=单价×数量,求出购买两种花的总费用是多少,进而判断出两种花卉各买多少盆时,总费用最少,最少费用是多少元即可.【详解】解:(1)太阳花的付款金额y1(元)关于购买量x(盆)的函数解析式是:y1=6x;(2)①一次购买的绣球花不超过20盆时,付款金额y2(元)关于购买量x(盆)的函数解析式是:y2=10x(x≤20);②一次购买的绣球花超过20盆时,付款金额y2(元)关于购买量x(盆)的函数解析式是:y2=10×20+10×0.8×(x-20)=200+8x-160=8x+40综上,可得绣球花的付款金额y2(元)关于购买量x(盆)的函数解析式是:y2=(3)根据题意,可得太阳花数量不超过:90×(盆),所以绣球花的数量不少于:90-30=60(盆),设太阳花的数量是x盆,则绣球花的数量是(90-x)盆,购买两种花的总费用是y元,则x≤30,则y=6x+[8(90-x)+40]=6x+[760-8x]=760-2x,∵-2<0,∴y随x的增大而减小,∵x≤30,∴当x=30时,y最小=760-2×30=700(元),90-30=60盆,答:太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.【点睛】本题主要考查了一次函数的应用,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.此题还考查了单价、总价、数量的关系:总价=单价×数量,单价=总价÷数量,数量=总价÷单价,要熟练掌握.21、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元【解析】试题分析:(1)根据销售利润=单个利润×销售量,列出式子整理后即可得;(2)由(1)中的函数解析式,利用二次函数的性质即可得;(3)将w=200代入(1)中的函数解析式,解方程后进行讨论即可得.试题解析:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225;(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.22、(1)l图象见解析;(1)x<﹣1;(3)2.【解析】试题分析:(1)先求出直线y1=-1x-3,y1=x+1与x轴和y轴的交点,再画出两函数图象即可;(1)直线y1=-1x-3的图象落在直线y1=x+1上方的部分对应的x的取值范围就是不等式-1x-3>x+1的解集;(3)根据三角形的面积公式求解即可.试题解析:(1)函数y1=﹣1x﹣3与x轴和y轴的交点分别是(﹣1.2,0)和(0,﹣3),y1=x+1与x轴和y轴的交点分别是(﹣4,0)和(0,1),其图象如图:(1)观察图象可知,函数y1=﹣1x﹣3与y1=x+1交于点(﹣1,1),当x<﹣1时,直线y1=﹣1x﹣3的图象落在直线y1=x+1的上方,即﹣1x﹣3>x+1,所以不等式﹣1x﹣3>x+1的解集为x<﹣1;故答案为x<﹣1;(3)∵y1=﹣1x﹣3与y1=x+1与y轴分别交于点A(0,﹣3),B(0,1),∴AB=2,∵y1=﹣1x﹣3与y1=x+1交于点C(﹣1,1),∴△ABC的边AB上的高为1,∴S△ABC=×2×1=2.23、(1)1200;(2)1.【解析】
(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=10等量关系列出方程.【详解】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=1,经检验:x=1是原方程的解.答:原计划每小时抢修道路1米.点评:本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.24、(1)v=;(2)平均每小时至少要卸货20吨.【解析】
(1)直接利用vt=100进而得出答案;
(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.【详解】(1)由题意可得:100=vt,则;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工厂车间出租合同
- 2024年个人房产交易协议样本解析版
- 上海市宝山区2024-2025学年九年级上学期期中英语试题(解析版)
- 2024供应商货物供应详细协议版B版
- 佳木斯大学《英语阅读3》2021-2022学年第一学期期末试卷
- 2024年全球医疗器械研发合同
- 2024云服务器租赁合同
- 商场2024年度租赁合同终止2篇
- 二零二四年度网络技术服务与支持合同4篇
- 银行业务培训
- 《中国近代史》第一章 国门洞开
- BS EN ISO 15848-1-2015 工业阀-逸散性排放的测量、试验和鉴定程序(中文)
- 学生实习就业推荐表
- 意向性和と思う课件 高考日语复习
- ArcGIS简介与应用基础
- 急性冠脉综合征
- 西门子g120中文说明书
- 数字媒体应用技术
- 德能勤绩廉表现情况50字
- 山东省消防安全管理体系
- 放射科专科护理模拟习题(含参考答案)
评论
0/150
提交评论