2024届山东省菏泽市名校八年级下册数学期末监测试题含解析_第1页
2024届山东省菏泽市名校八年级下册数学期末监测试题含解析_第2页
2024届山东省菏泽市名校八年级下册数学期末监测试题含解析_第3页
2024届山东省菏泽市名校八年级下册数学期末监测试题含解析_第4页
2024届山东省菏泽市名校八年级下册数学期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省菏泽市名校八年级下册数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1) B.x2+2x﹣1=(x﹣1)2C.x2﹣1=(x﹣1)2 D.x2﹣x+2=x(x﹣1)+22.若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0 B.2 C.0或2 D.0或﹣23.已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.54.如果代数式能分解成形式,那么k的值为()A.9 B.﹣18 C.±9 D.±185.一张矩形纸片ABCD,已知AB=3,AD=2,小明按所给图步骤折叠纸片,则线段DG长为()A.2 B. C.2 D.16.使式子有意义的x的取值范围是().A.x≤1 B.x≤1且x≠﹣2C.x≠﹣2 D.x<1且x≠﹣27.如图,等边三角形的边长为4,点是△ABC的中心,,的两边与分别相交于,绕点顺时针旋转时,下列四个结论正确的个数是()①;②;③;④周长最小值是9.A.1个 B.2个 C.3个 D.4个8.下列根式中,不是最简二次根式的是()A.105 B.2 C.8 D.9.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.10.已知:如果二次根式是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.28二、填空题(每小题3分,共24分)11.在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.12.下表是某地生活垃圾处理情况的分析,选择________统计图进行分析比较较为合理.处里方式回收利用填埋焚烧占的百分比4%23%73%13.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式_____.14.已知:a、b、c是△ABC的三边长,且满足|a﹣3|++(c﹣5)2=0,则该三角形的面积是_____.15.如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.16.如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________17.如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.18.小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.三、解答题(共66分)19.(10分)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.20.(6分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?21.(6分)已知一次函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数图象与y轴的交点坐标为(0,﹣2),求m的值;(3)若y随着x的增大而增大,求m的取值范图;(4)若函数图象经过第一、三,四象限,求m的取值范围.22.(8分)在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;(2)求证:CD=BF+DF.23.(8分)先化简,再求值(1)已知,求的值.(2)当时,求的值.24.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.25.(10分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?26.(10分)如图,点、、、在一条直线上,,,,交于.求证:与互相平分,

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由题意根据因式分解的意义,即可得答案判断选项.【详解】解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故A符合题意;B、x2+2x+1=(x+1)2,故B不符合题意;C、x2﹣1=(x+1)(x﹣1),故C不符合题意;D、不能分解,故D不符合题意;故选:A.【点睛】本题考查因式分解的意义,一提,二套,三检查,注意分解要彻底.2、C【解析】

先依据平方根的定义和性质求得a,b的值,然后依据有理数的加法法则求解,再求立方根即可解答【详解】∵(﹣4)2=16,∴a=±4,∵b的一个平方根是2,∴b=4,当a=4时,∴a+b=8,∴8的立方根是2,当a=﹣4时,∴a+b=0,∴0的立方根是0,故选:C.【点睛】此题考查了平方根和立方根,解题关键在于求出a,b的值3、D【解析】试题解析:∵=,且是整数,∴2是整数,即1n是完全平方数,∴n的最小正整数为1.故选D.点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.4、B【解析】

利用完全平方公式的结构特征判断即可确定出k的值.【详解】解:∵=(x-9)2,

∴k=-18,

故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.5、B【解析】

首先根据折叠的性质求出DA′、CA′和DC′的长度,进而求出线段DG的长度.【详解】解:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=DC′=,故选B.【点睛】本题主要考查了翻折变换以及矩形的性质,解题的关键是求出DC′的长度.6、B【解析】

根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,1﹣x≥0且1+x≠0,解得x≤1且x≠﹣1.故选B.考点:二次根式有意义的条件;分式有意义的条件.7、B【解析】

首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用S=S得到四边形ODBE的面积=S,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S=OE,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,接下来由△BDE的周长=BC+DE=4+DE=4+OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】连接OB,OC,如图.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O是△ABC的中心,∴OB=OC,OB.OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD和△COE中,∠BOD=∠COE,BO=CO,∠OBD=∠OCE,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S=S,∴四边形ODBE的面积=S=S=××4=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=··OE·OE=OE,即S随OE的变化而变化,而四边形ODBE的面积为定值,∴S≠S,所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④错误.故选B.【点睛】此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.8、C【解析】

根据最简二次根式的概念即可求出答案.【详解】C.原式=22,故C不是最简二次根式,故选:C.【点睛】此题考查最简二次根式,解题关键在于掌握其概念.9、D【解析】

根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.是中心对称图形,不是轴对称图形,选项不符合题意;

B.是轴对称图形,不是中心对称图形,选项不符合题意;

C.不是中心对称图形,也不是轴对称图形,选项不符合题意;

D.是中心对称图形,也是轴对称图形,选项符合题意,

故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.10、C【解析】

先将化为最简二次根式,然后根据是整数可得出n的最小值.【详解】=2,又∵是整数,∴n的最小值为1.故选C.【点睛】此题考查了二次根式的知识,解答本题的关键是将化为最简二次根式,难度一般.二、填空题(每小题3分,共24分)11、8.【解析】

直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.【详解】如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO=,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.【点睛】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.12、扇形【解析】

条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】解:由统计图的特点可知:想用统计图记录垃圾的处理比例,就用扇形统计图.故答案为扇形.【点睛】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.13、【解析】如图所示:连接OB、AC相交于点E(3,1),过点E、M作直线EM,则直线EM即为所求的直线设直线EM的解析式为y=kx+b,把E、M两点坐标代入y=kx+b中,得解得所以直线的函数表达式:y=2x-5.故答案是:y=2x-5.【点睛】此题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标,过点E和点M作直线EM,再用待定系数法求直线的解析式即可.14、1【解析】

根据绝对值,二次根式,平方的非负性求出a,b,c的值,再根据勾股定理逆定理得到三角形为直角三角形,故可求解.【详解】解:由题意知a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=c2,∴三角形的形状是直角三角形,则该三角形的面积是3×4÷2=1.故答案为:1.【点睛】此题主要考查勾股定理的应用,解题的关键是熟知实数的性质.15、1【解析】

由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.【详解】解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.故答案为:1.【点睛】本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.16、<k≤2.【解析】

直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.【详解】∵直线y=kx+b过点N(0,-2),∴b=-2,∴y=kx-2.当直线y=kx-2的图象过A点(2,3)时,2k-2=3,k=2;当直线y=kx-2的图象过B点(2,2)时,k-2=2,k=2;当直线y=kx-2的图象过C点(4,2)时,4k-2=2,k=,∴k的取值范围是<k≤2.故答案为<k≤2.【点睛】本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.17、1【解析】

把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.【详解】∵点A(1,n)在一次函数y=3x﹣2的图象上,∴n=3×1﹣2=1.故答案为:1.【点睛】本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.18、1.【解析】

根据表格中的数据可以计算出小明家全年通话时间不超过5min的次数,本题得以解决.【详解】由题意可得,小明家全年通话时间不超过5min约为:1000×=1(次),故答案为:1.【点睛】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.三、解答题(共66分)19、(1)证明见解析;(2)BM=ME=;(3)证明见解析.【解析】

(1)如图1,延长AB交CF于点D,证明BM为△ADF的中位线即可.(2)如图2,作辅助线,推出BM、ME是两条中位线.(3)如图3,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME.【详解】(1)如图1,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD.∴点B为线段AD的中点.又∵点M为线段AF的中点,∴BM为△ADF的中位线.∴BM∥CF.(2)如图2,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=AD=a,∴点B为AD中点,又点M为AF中点.∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a.∴点E为FG中点,又点M为AF中点.∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a.∴BM=ME=.(3)如图3,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD.∴点B为AD中点.又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG.∴点E为FG中点.又点M为AF中点,∴ME=AG.在△ACG与△DCF中,∵,∴△ACG≌△DCF(SAS).∴DF=AG,∴BM=ME.20、(1)A种礼盒单价为90元,B种礼盒单价为120元;(2)见解析;(3)1320元.【解析】

(1)利用A、B两种礼盒的单价比为3:4,单价和为210元,得出等式求出即可;(2)利用两种礼盒恰好用去9900元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用w,m关系得出符合题意的答案.【详解】(1)设A种礼盒单价为3x元,B种礼盒单价为4x元,则:3x+4x=210,解得x=30,所以A种礼盒单价为3×30=90元,B种礼盒单价为4×30=120元.(2)设A种礼盒购进a个,购进B种礼盒b个,则:90a+120b=9900,可列不等式组为:,解得:30≤a≤36,因为礼盒个数为整数,所以符合的方案有2种,分别是:第一种:A种礼盒30个,B种礼盒60个,第二种:A种礼盒34个,B种礼盒57个.(3)设该商店获利w元,由(2)可知:w=12a+(18﹣m)b,a=110-,则w=(2﹣m)b+1320,若使所有方案都获利相同,则令2﹣m=0,得m=2,此时店主获利1320元.【点睛】此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.21、(1)m=1;(2)m=1;(1)m>﹣0.5;(4)﹣0.5<m<1.【解析】

(1)经过原点,则m-1=0,求得其值即可;

(2)若函数图象与y轴的交点坐标为(0,﹣2),即为m-1=-2;

(1)y随着x的增大而增大,就是,从而求得解集;

(4)函数图象经过第一、三,四象限,k>0,b≤0,求得m的取值范围即可.【详解】解:(1)把(0,0)代入y=(2m+1)x+m﹣1得m﹣1=0,解得m=1;(2)把x=0代入y=(2m+1)x+m﹣1得y=m﹣1,则直线y=(2m+1)x+m﹣1与y轴的交点坐标为(0,m﹣1),所以m﹣1=﹣2,解得m=1;(1)∵y随着x的增大而增大,∴2m+1>0,解得:m>﹣0.5;(4)由题意可得:解得:即当时函数图象经过第一、三,四象限.【点睛】考查一次函数的性质,解题的关键是熟练掌握一次函数的性质并正确的应用.22、(1)3+(2)见解析【解析】

(1)过点E作EH⊥AB交AB于点H.分别求出AH,BH即可解决问题;(2)连接EF,延长FE交AB与点M.想办法证明△BMF是等腰三角形即可解决问题;【详解】解:(1)过点E作EH⊥AB交AB于点H.∵AD∥BC,AB∥CD,∴四边形ABCD为平行四边形.∴AB=DC,∠DAB=∠DBC,在△CGD和△AEB中,,∴△CGD≌△AEB,∴∠DGC=∠BEA,∴∠DGB=∠BED,∵AD∥BC,∴∠EDG+∠DGB=180°,∴∠EDG+∠BED=180°∴EB∥DG,∴四边形BGDE为平行四边形,∴BG=ED,∵G是BD的中点,∴BG=BC,∴BC=AD,ED=BG=AD,∵BC=2,∴AE=AD=,在Rt△AEH中,∵∠EAB=45°,sin∠EAB=sin45°=,∴EH=,∵∠EHA=90°,∴△AHE为等腰直角三角形,∴AH=EH=,∵∠F=60°,∴∠FBA=60°,∵∠EBA=∠EBF,∴∠EBA=30°,在Rt△EHB中,tan∠EBH=tan30°=,∴HB=3,∴AB=3+.(2)连接EF,延长FE交AB与点M.∵∠A=∠EDF,AE=DE,∠AEM=∠DEF,∴△AEM≌△DEF(ASA),∴DF=AM,ME=EF,又∵∠EBA=∠EBF,∴△MBF是等腰三角形∴BF=BM,又∵AB=AM+BM,∴CD=BF+DF.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,属于中考常考题型.23、(1);(2)【解析】

(1)先根据分式混合运算的法则把原式进行化简,再把代入进行计算即可;(2)先把分式进行化简计算,在化简时要注意运算顺序,然后再把x=代入化简后的式子即可得到答案.【详解】(1)解:原式=(2分)==

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论