版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省合肥市北城片区八年级数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是()A. B.C. D.2.如图,在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为().A.6 B.9 C.10 D.123.已知:四边形ABCD的对角线AC、BD相交于点O,则下列条件不能判定四边形ABCD是平行四边形的是A., B.,C., D.,4.证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:,以下是排乱的证明过程,正确的顺序应是①,.②四边形ABCD是平行四边形.③,.④.⑤,()A.②①③④⑤ B.②③⑤①④ C.②③①④⑤ D.③②①④⑤5.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.1,4,3.1,1,1,3.1.这组数据的众数是()A.3 B.3.1 C.4 D.16.下列式子是分式的是()A. B. C. D.7.下列图形中既是中心对称图形,又是轴对称图形的是()A. B.C. D.8.欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax=b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是(
)A.AC B.AD C.AB D.BC9.顺次连接矩形四边中点得到的四边形一定是()A.梯形 B.正方形 C.矩形 D.菱形10.如图,在正方形ABCD中,点E,F分别在CD,BC上,且AF=BE,BE与AF相交于点G,则下列结论中错误的是()A.BF=CE B.∠DAF=∠BECC.AF⊥BE D.∠AFB+∠BEC=90°二、填空题(每小题3分,共24分)11.当x=1时,分式的值是_____.12.已知一次函数y=kx﹣k,若y随着x的增大而减小,则该函数图象经过第____象限.13.如图,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=40°,则∠AOD的度数为_____.14.在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为__________.15.请写出一个图形经过一、三象限的正比例函数的解析式.16.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.17.如图:已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴,轴分别交于点C、点D,若DB=DC,则直线CD的函数表达式为__________.18.如图,平行四边形中,的平分线交于点,的平分线交于点,则的长为________.三、解答题(共66分)19.(10分)在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P的“a级关联点”例如,点的“3级关联点”为,即.已知点的“级关联点”是点,点B的“2级关联点”是,求点和点B的坐标;已知点的“级关联点”位于y轴上,求的坐标;已知点,,点和它的“n级关联点”都位于线段CD上,请直接写出n的取值范围.20.(6分)已知:将矩形绕点逆时针旋转得到矩形.(1)如图,当点在上时,求证:(2)当旋转角的度数为多少时,?(3)若,请直接写出在旋转过程中的面积的最大值.21.(6分)计算:(2﹣)×÷5.22.(8分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.23.(8分)如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.(1)求证:△CEF≌△AEF;(2)联结DE,当BD=2CD时,求证:AD=2DE.24.(8分)如图,直线l1:y1=−x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;
(3)根据图象直接写出y1>y2时自变量x的取值范围.25.(10分)某县为了了解2018年初中毕业生毕业后的去向,对部分九年级学生进行了抽样调查,就九年级学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他)进行数据统计,并绘制了两幅不完整的统计图(如图①②)请问:(1)本次共调查了_名初中毕业生;(2)请计算出本次抽样调查中,读职业高中的人数和所占百分比,并将两幅统计图中不完整的部分补充完整;(3)若该县2018年九年级毕业生共有人,请估计该县今年九年级毕业生读职业高中的学生人数.26.(10分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D【详解】解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系
综上所述故选:D.【点睛】本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.2、D【解析】
根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为21,∴CD=6,∴BC=2CD=1.故选D.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.3、B【解析】
平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形,(2)两组对边分别相等的四边形是平行四边形,(3)一组对边平行且相等的四边形是平行四边形,(4)两组对角分别相等的四边形是平行四边形,(5)对角线互相平分的四边形是平行四边形,根据平行四边形的判定即可解答.【详解】A选项,,,根据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,B选项,不能判定四边形是平行四边形,C选项,,根据对角线互相平分的四边形是平行四边形,能判定四边形ABCD是平行四边形,D选项,,根据两组对角分别相等的四边形是平行四边形能判定四边形ABCD是平行四边形,故选B.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.4、C【解析】
利用平行四边形的性质证三角形全等,进而得出对应边相等,由此即可明确证明顺序.【详解】解:四边形ABCD是平行四边形,,,所以正确的顺序应为②③①④⑤故答案为:C【点睛】本题考查了平行四边形对角线互相平分的证明,明确证明思路是解题的关键.5、B【解析】试题分析:在这一组数据中3.1出现了3次,次数最多,故众数是3.1.故选B.考点:众数.6、B【解析】
根据分母中含有字母的式子是分式,可得答案.【详解】解:是分式,故选:B.【点睛】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.7、D【解析】
轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于掌握其定义8、B【解析】
解一元二次方程,由求根公式求得,已知AC、BC,由勾股定理求得AB,则AD等于AB和BD之差,比较AD的长度和x的解即可知结论.【详解】x2+ax=b2,即x2+ax-b2=0,∴∵∠ACB=90°,∴AB=,则故答案为:B.【点睛】本题主要考查一元二次方程的根,与勾股定理,解题关键在于能够求出AB的长度.9、D【解析】
根据顺次连接矩形的中点,连接矩形的对边上的中点,可得新四边形的对角线是互相垂直的,并且是平行四边形,所以可得新四边形的形状.【详解】根据矩形的中点连接起来首先可得四边是相等的,因此可得四边形为菱形,故选D.【点睛】本题主要考查对角线互相垂直的判定定理,如果四边形的对角线互相垂直,则此四边形为菱形.10、D【解析】
根据正方形的性质可得∠FBA=∠BCE=90°、AB=BC,结合BF=CE可用“SAS”得到△ABF≌△BCE,从而可对A进行判断;由全等三角形的性质可得∠BAF=∠CBE,结合等角的余角相等即可对B进行判断;由直角三角形的两个锐角互余可得∠BAF+∠AFB=90°,结合全等三角形的性质等量代换可得∠CBE+∠AFB=90°,从而可得到∠BGF的度数,据此对C进行判断;对于D,由全等三角形的性质可知∠AFB=∠BEC,因此∠AFB=∠BEC=45°时D正确,分析能否得到∠AFB=45°即可对其进行判断.【详解】∵四边形ABCD为正方形,∴∠FBA=∠BCE=90°,AB=BC,又∵AF=BE,∴△ABF≌△BCE,∴BF=CE,∠BAF=∠CBE.故A正确;∵∠C=90°,∴∠CBE+∠BEC=90°.∵∠BAD=∠BAF+∠DAF=90°,∠BAF=∠CBE,∴∠DAF=∠BEC,故B正确.∵∠BAF=∠CBE,∠BAF+∠AFB=90°,∴∠CBE+∠AFB=90°,∴∠BGF=90°,∴AG⊥BE,故C正确.∵△ABF≌△BCE,∴∠AFB=∠BEC.又∵点F在BC上,∴∠AFB≠45°,∴∠AFB+∠BEC≠90°,故D错误;故选D.【点睛】本题考察了正方形的四个角都是直角,四条边相等,全等三角形的判定(SAS),全等三角形的性质,同角(等角)的余角相等,牢牢掌握这些知识点是解答本题的关键.二、填空题(每小题3分,共24分)11、【解析】
将代入分式,按照分式要求的运算顺序计算可得.【详解】当时,原式.故答案为:.【点睛】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.12、【解析】试题分析:∵一次函数y=kx﹣k,y随着x的增大而减小,∴k<0,即﹣k>0,∴该函数图象经过第一、二、四象限.故答案为一、二、四.考点:一次函数图象与系数的关系.13、50°【解析】
根据旋转的性质得出全等,根据全等三角形性质求出∠DOC=40°,代入∠AOD=∠AOC﹣∠DOC求出即可.【详解】解:∵△OAB绕点O逆时针旋转90°到△OCD的位置,∠AOB=40°,∴△OAB≌△OCD,∠COA=90°,∴∠DOC=∠AOB=40°,∴∠AOD=∠AOC﹣∠COD=90°﹣40°=50°,故答案为50°14、9或10.1【解析】
根据等腰△ABC中,当a为底,b,c为腰时,b=c,得出△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解方程求出k=2,则b+c=2k+1=1;当a为腰时,则b=4或c=4,然后把b或c的值代入计算求出k的值,再解方程进而求解即可.【详解】等腰△ABC中,当a为底,b,c为腰时,b=c,若b和c是关于x的方程x2-(2k+1)x+1(k-)=0的两个实数根,则△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解得:k=2,则b+c=2k+1=1,△ABC的周长为4+1=9;当a为腰时,则b=4或c=4,若b或c是关于x的方程x2-(2k+1)x+1(k-)=0的根,则42-4(2k+1)+1(k-)=0,解得:k=,解方程x2-x+10=0,解得x=2.1或x=4,则△ABC的周长为:4+4+2.1=10.1.15、y=x(答案不唯一)【解析】试题分析:设此正比例函数的解析式为y=kx(k≠1),∵此正比例函数的图象经过一、三象限,∴k>1.∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).16、【解析】
先根据折叠的性质得∠EAB=∠EAN,AN=AB=8,再根据正方形的性质得AB∥CD,则∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,设CM=x,则AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根据勾股定理,解得x,然后利用MN=AM-AN求解即可.【详解】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等,也考查了正方形的性质和勾股定理,熟练掌握正方形的性质及折叠的性质并能正确运用勾股定理是解题的关键.17、【解析】
试题分析:设直线AB的解析式为y=kx+b,把A(0,1)、点B(1,0)代入,得,解得.∴直线AB的解析式为y=﹣1x+1.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,∵y轴⊥BC∴OB=OC,∴BC=1,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣1(x+1)+1,即y=-1x-1.18、1【解析】
由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG=DE,从而证得AE=DG,进而求出EG的长.【详解】解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD,
∴∠GBC=∠BGA,∠BCE=∠CED,
又∵BG平分∠ABC,CE平分∠BCD,
∴∠ABG=∠GBC,∠BCE=∠ECD,
∴∠ABG=∠AGB,∠ECD=∠CED.
∴AB=AG,CD=DE,
∴AG=DE,
∴AG-EG=DE-EG,
即AE=DG,
∵AB=5,AD=6,
∴AG=5,DG=AE=1,
∴EG=1,
故答案为1.【点睛】本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG=DE是关键.运用平行四边形的性质和等腰三角形的知识解答.三、解答题(共66分)19、(1),;(2);(3).【解析】
(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义和点M(m-1,2m)的“-3级关联点”M'位于y轴上,即可求出M'的坐标.(3)因为点C(-1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N'都位于线段CD上,可得到方程组,解答即可.【详解】解:点的“级关联点”是点,,即.设点,点B的“2级关联点”是,,解得.点的“级关联点”为,位于y轴上,,解得:,.点和它的“n级关联点”都位于线段CD上,,,,,解得:.【点睛】本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,正确理解题意,灵活运用所学知识解决问题是解题的关键.20、(1)详见解析;(2)当旋转角的度数为时,;(3)【解析】
(1)由旋转的性质和矩形的性质,找出证明三角形全等的条件,根据全等三角形的性质即可得到答案;(2)连接,由旋转的性质和矩形的性质,证明,根据全等三角形的性质即可得到答案;(3)根据题意可知,当旋转至AG//CD时,的面积的最大,画出图形,求出面积即可.【详解】(1)证明:矩形是由矩形旋转得到的,,,又,∴,,;(2)解:连接矩形是由矩形旋转得到的,,,,∴,,即,;,,,当旋转角的度数为时,;(3)解:如图:当旋转至AG//CD时,的面积的最大,∵,∴,,∴;∴的面积的最大值为.【点睛】本题考查了旋转的性质,矩形的性质,全等三角形的判定和性质,以及三角形的面积公式,解题的关键是熟练掌握旋转的性质,矩形的性质,全等三角形的判定和性质,正确做出辅助线,利用所学的性质进行求解.注意利用数形结合的思想进行解题.21、-【解析】
先化简二次根式,然后利用乘法的分配率进行计算,最后化成最简二次根式即可.【详解】原式=(4-)×÷5=(3-)÷5=-【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式运算的法则和运算律.22、2.【解析】
根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.【详解】解:∵AD是△ABC的中线,且BC=10,∴BD=BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵CD=BD,∴AC=AB=2.【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.23、(1)见解析;(2)见解析.【解析】
(1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;
(2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD=2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CEFD为平行四边形,可得出DE=CF,再由CF=AF,等量代换得到DE=AF.【详解】证明:(1)∵∠ACB=90°,且E线段AB中点,∴CE=AB=AE,∵∠ACD=90°,F为线段AD中点,∴AF=CF=AD,在△CEF和△AEF中,,∴△CEF≌△AEF(SSS);(2)连接DE,∵点E、F分别是线段AB、AD中点,∴EF=BD,EF∥BC,∵BD=2CD,∴EF=CD.又∵EF∥BC,∴四边形CFEDD是平行四边形,∴DE=CF,∵CF=AF=FD,∴AD=2DE.【点睛】此题考查了全等三角形的判定与性质,中位线定理,直角三角形斜边上的中线等于斜边的一半,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24、(1)D点坐标为(4,3)(1)15;(3)x<4【解析】试题分析:(1)先得到两函数的解析式,组成方程组解求出D的坐标;(1)由y1=x+1可知,C点坐标为(0,1),分别求出△ABC和△ACD的面积,相加即可.(3)由图可直接得出y1>y1时自变量x的取值范围.试题解析:(1)将A(0,6)代入y1=−x+m得,m=6;将B(-1,0)代入y1=kx+1得,k=组成方程组得解得故D点坐标为(4,3);(1)由y1=x+1可知,C点坐标为(0,1),S△ABD=S△ABC+S△ACD=×5×1+×5×4=15;(3)由图可知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电动食物搅拌机市场发展现状调查及供需格局分析预测报告
- 纸张涂布机市场发展现状调查及供需格局分析预测报告
- 2024年度影视制作合同:某影视公司与某投资方之间的合作
- 比重计市场发展现状调查及供需格局分析预测报告
- 2024年度公墓石材开采与供应合同
- 运输自行车用拖车市场环境与对策分析
- 室内除臭喷雾剂项目评价分析报告
- 2024年度城市公共交通设施建设与合作合同
- 2024年度影视制作与发行分包合同
- 04年春国家开放大学校园停车管理服务合同
- 动物生产新技术与应用课件
- 三年级上册道德与法治教案-《平安出行》 部编版
- 植物营养学课件:植物的钙镁硫营养
- 北京科技大学第二批非教学科研岗位招考聘用模拟试卷【共500题附答案解析】
- 糕点生产工艺流程图新
- 小学英语工作室个人年度总结5篇
- 音乐剧《猫》教案
- 电力二次系统安全监控日志规范
- 干细胞精品课件
- 介绍长沙课件
- 点直线与圆的位置关系说课稿 完整版课件
评论
0/150
提交评论