广东省中学山市2024届八年级数学第二学期期末达标检测试题含解析_第1页
广东省中学山市2024届八年级数学第二学期期末达标检测试题含解析_第2页
广东省中学山市2024届八年级数学第二学期期末达标检测试题含解析_第3页
广东省中学山市2024届八年级数学第二学期期末达标检测试题含解析_第4页
广东省中学山市2024届八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中学山市2024届八年级数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图图形中,是中心对称图形,但不是轴对称图形的是()A. B.C. D.3.在Rt△ABC中,BC是斜边,∠B=40°,则∠C=()A.90° B.60° C.50° D.40°4.如图,在平面直角坐标系中,菱形ABCD的顶点A、B的坐标分别为(3,0)、(-2,0),点D在y轴正半轴上,则点C的坐标为()A.(-3,4). B.(-4,3). C.(-5,3). D.(-5,4).5.下列函数中,图像不经过第二象限的是()A. B. C. D.6.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是()A. B.C. D.7.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上8.下列几个二次根式,,,,中是最简二次根式的有()A.个 B.个 C.个 D.个9.如图,直线y=2x+4与x轴,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰ΔOBC,将ΔOBC沿y轴折叠,使点C恰好落在直线AB上,则点C的坐标为()A.(1,2) B.(4,2) C.(3,2) D.(-1,2)10.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.11.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-12.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣1二、填空题(每题4分,共24分)13.关于x的方程有两个实数根,则符合条件的一组的实数值可以是b=______,c=______.14.已知是方程的一个根,_________________.15.若平行四边形中两个内角的度数比为1:2,则其中一个较小的内角的度数是________°.16.若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________17.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.18.若,则__________.三、解答题(共78分)19.(8分)阅读材料:关于的方程:的解为:,(可变形为)的解为:,的解为:,的解为:,…………根据以上材料解答下列问题:(1)①方程的解为.②方程的解为.(2)解关于方程:①()②()20.(8分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,,;(2)使平行四边形有一锐角为15°,且面积为1.21.(8分)如图,已知□ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.22.(10分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:△AOE≌△COF;(2)求证:四边形AFCE为菱形;(3)求菱形AFCE的周长.23.(10分)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+…+i1.24.(10分)小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.若已知CD=,求AB的长.25.(12分)在梯形中,,点在直线上,联结,过点作的垂线,交直线与点,(1)如图1,已知,:求证:;(2)已知:,①当点在线段上,求证:;②当点在射线上,①中的结论是否成立?如果成立,请写出证明过程;如果不成立,简述理由.26.(1)解方程:=;(2)因式分解:2x2-1.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.2、C【解析】

根据轴对称图形与中心对称图形的概念求解【详解】A.是轴对称图形,是中心对称图形,不符合题意;B.是轴对称图形,是中心对称图形,不符合题意;C.不是轴对称图形,是中心对称图形,符合题意;D.是轴对称图形,是中心对称图形,不符合题意.故选C【点睛】本题考查轴对称图形与中心对称图形,熟悉概念即可解答.3、C【解析】

BC是斜边,则∠A=90°,利用三角形内角和定理即可求出∠C.【详解】∵BC是斜边∴∠A=90°∴∠C=180°-90°-40°=50°故选C.【点睛】本题考查三角形内角和定理,根据BC是斜边得出∠A是解题的关键.4、D【解析】

利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【详解】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,

∴AB=AD=5,

∴DO=AD2-AO2=52-32=4,

∴点C【点睛】本题考查菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.5、B【解析】

根据一次函数的性质,逐个进行判断,即可得出结论.【详解】各选项分析得:A.k=3>0,b=5>0,图象经过第一、二、三象限;B.k=3>0,b=−5<0,图象经过第一、三、四象限;C.k=−3<0,b=5>0,图象经过第一、二、四象限;D.k=−3<0,b=−5<0,图象经过第二、三、四象限.故选B.【点睛】此题考查一次函数的性质,解题关键在于掌握一次函数的性质.6、A【解析】

设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.【详解】解:设每人每小时的绿化面积为x平方米,

由题意得,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7、C【解析】

必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.8、A【解析】

利用最简二次根式定义判断即可.【详解】是最简二次根式,则最简二次根式的有2个,

故选:A.【点睛】此题考查了最简二次根式,以及二次根式的定义,熟练掌握各自的性质是解本题的关键.9、A【解析】

由直线y=2x+4与y轴交于点B,可得OB=4,再根据△OBC是以OB为底的等腰三角形,可得点C的纵坐标为2,依据△OBC沿y轴折叠,使点C恰好落在直线AB上,即可得到点C的横坐标为1.【详解】解:∵直线y=2x+4与y轴交于点B,∴B(0,4),∴OB=4,又∵△OBC是以OB为底的等腰三角形,∴点C的纵坐标为2,∵△OBC沿y轴折叠,使点C恰好落在直线AB上,∴当y=2时,2=2x+4,解得x=-1,∴点C的横坐标为1,∴点C的坐标为(1,2),故选:A.【点睛】本题考查了等腰三角形的性质、翻折变换的性质、一次函数的性质;熟练掌握翻折变换和等腰三角形的性质是解决问题的关键.10、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.11、B【解析】

根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.12、B【解析】试题分析:先根据正比例函数的定义列出关于k的方程组,求出k的值即可.解:∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得k=1.故选B.考点:正比例函数的定义.二、填空题(每题4分,共24分)13、21(答案不唯一,满足即可)【解析】

若关于x的一元二次方程有两个实数根,所以△=b2-4ac≥0,建立关于b与c的不等式,求得它们的关系后,写出一组满足题意的b,c的值.【详解】解:∵关于x的一元二次方程有两个实数根,

∴△=b2-4ac≥0,

即b2-4×c=b2-c≥0,

∴b=2,c=1能满足方程.故答案为2,1(答案不唯一,满足即可).【点睛】本题考查根的判别式,掌握方程有两个实数根的情况是△≥0是解题的关键.14、15【解析】

一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即可对这个数代替未知数所得式子变形,即可求解.【详解】解:是方程的根,.故答案为:15.【点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是熟练掌握方程的解的定义,正确得到.15、60°【解析】

根据平行四边形的性质得出,推出,根据,求出即可.【详解】四边形是平行四边形,,,,.故答案为:.【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.16、【解析】

根据∆>0列式求解即可.【详解】由题意得4-8m>0,∴.故答案为:.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.17、1【解析】试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB===10,∴BD=2OB=1.故答案为:1.18、【解析】

利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.【详解】解:设a=2k,b=5k∴故答案为:.【点睛】本题考查了比例的性质,属于基础知识,比较简单.三、解答题(共78分)19、(1)①,;②,;(2)①,;②,.【解析】试题分析:(1)①令第一个方程中的a=2即可得到答案;②把(x-1)看成一个整体,利用第一个方程的规律即可得出答案;(2)①等式两边减去1,把(x-1)和(a-1)分别看成是整体,利用第三个方程的规律即可得出答案;②等式两边减去2,把(x-2)和(a-2)分别看成是整体,利用第二个方程和第四个方程的规律即可得出答案.试题解析:解:(1)①由第一个方程规律可得:x1=2,x2=;②根据第一个方程规律可得:x-1=3或x-1=,∴x1=4,x2=;(2)①方程两边减1得:(x-1)+=(a-1)+,∴x-1=a-1或x-1=,∴:x1=a,x2=;②方程两边减2得:(x-2)+=(a-2)+,∴∴x-2=a-2或x-2=,∴:x1=a,x2=.点睛:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.20、(1)详见解析;(2)详见解析【解析】

(1)本题中实际上是长为2宽为2的正方形的对角线长,实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【详解】(1)△ABC为所求;

(2)四边形ABCD为所求.【点睛】关键是确定三角形的边长,然后根据边长画出所求的三角形.21、证明见解析.【解析】

由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.【详解】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF.∵AD=BC,∴AF=EC.【点睛】本题主要考查平行四边形的性质与判定;证明四边形AECF为平行四边形是解决问题的关键.22、(1)详见解析;(2)详见解析;(3)20cm.【解析】

(1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.【详解】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)证明:∵△AOE≌△COF,∴OE=OF,∵OA=OC,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴平行四边形AFCE为菱形;(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得x=1.所以菱形AFCE的周长为1×4=20cm.【点睛】本题考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,矩形的性质等知识.根据勾股定理并建立方程是解题的关键.23、(2)-i,2;(2)7-i;(3)i-2.【解析】试题分析:(2)把代入求出即可;

(2)根据多项式乘以多项式的计算法则进行计算,再把代入求出即可;

(3)先根据复数的定义计算,再合并即可求解.试题解析:(2)故答案为−i,2;(2)(3)24、.【解析】

根据等腰直角三角形的性质求出BD,根据勾股定理求出BC,根据正切的定义求出AB.【详解】∵在Rt△BDC中,CD=,∴BD=CD=,∴BC==,∵∠ACB=30°,∴AC=1AB,∵AB1+BC1=AC1,∴AB1+6=4AB1,∴AB=.【点睛】本题考查了等腰直角三角形的性质,含30°角的直角三角形的性质,以及勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.25、(1)证明见解析;(2)①证明见解析;②结论仍然成立,证明见解析.【解析】

(1)过F作FM⊥AD,交AD的延长线于点M,通过AAS证明△ABE≌△EMF,根据全等三角形的性质即可得出AB=AD;(2)①在AB上截取AG=AE,连接EG.通过ASA证明△BGE≌△EDF,根据全等三角形的性质即可得出BE=EF;②【详解】(1)如图:过F作FM⊥AD,交AD的延长线于点M,∴∠M=90°,∵∠BEF=90°,∴∠AEB+MEF=90°,∵∠A=90°,∴∠ABE+∠AEB=90°,∴∠MEF=∠ABE,在△ABE和△EMF中,,∴△ABE≌△EMF(AAS)∴AB=ME,AE=MF,∵AM∥BC,∠C=45°,∴∠MDF=∠C=45°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论