![江苏省海安市八校联考2024届八年级下册数学期末统考试题含解析_第1页](http://file4.renrendoc.com/view5/M00/39/01/wKhkGGYZeiaAWkpRAAIKMb9HqXQ730.jpg)
![江苏省海安市八校联考2024届八年级下册数学期末统考试题含解析_第2页](http://file4.renrendoc.com/view5/M00/39/01/wKhkGGYZeiaAWkpRAAIKMb9HqXQ7302.jpg)
![江苏省海安市八校联考2024届八年级下册数学期末统考试题含解析_第3页](http://file4.renrendoc.com/view5/M00/39/01/wKhkGGYZeiaAWkpRAAIKMb9HqXQ7303.jpg)
![江苏省海安市八校联考2024届八年级下册数学期末统考试题含解析_第4页](http://file4.renrendoc.com/view5/M00/39/01/wKhkGGYZeiaAWkpRAAIKMb9HqXQ7304.jpg)
![江苏省海安市八校联考2024届八年级下册数学期末统考试题含解析_第5页](http://file4.renrendoc.com/view5/M00/39/01/wKhkGGYZeiaAWkpRAAIKMb9HqXQ7305.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省海安市八校联考2024届八年级下册数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图:菱形ABCD的对角线AC,BD相交于点O,AC=,BD=,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是()A. B.或 C. D.不存在2.如图,在△ABC所在平面上任意取一点O(与A、B、C不重合),连接OA、OB、OC,分别取OA、OB、OC的中点A1、B1、C1,再连接A1B1、A.△ABC与△AB.△ABC与是△AC.△ABC与△A1B1D.△ABC与△A1B13.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角相等4.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E5.如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A. B. C.2.5 D.6.在五张完全相同的卡片上分别画上:等边三角形、平行四边形、等腰梯形、圆和正方形,在看不见图形的情况下随机抽出1张卡片,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.7.如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论①BE⊥AC②四边形BEFG是平行四边形③EG=GF④EA平分∠GEF其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④8.如图,一次函数的图象与两坐标轴分别交于、两点,点是线段上一动点(不与点A、B重合),过点分别作、垂直于轴、轴于点、,当点从点开始向点运动时,则矩形的周长()A.不变 B.逐渐变大 C.逐渐变小 D.先变小后变大9.一组数据8,7,6,7,6,5,4,5,8,6的众数是()A.8 B.7 C.6 D.510.为了了解某市参加中考的25000名学生的视力情况,抽查了2000名学生的视力进行统计分析,下面四个判断正确的是()A.2000名学生的视力是总体的一个样本 B.25000名学生是总体C.每名学生是总体的一个个体 D.样本容量是2000名11.如图,点在正方形外,连接,过点作的垂线交于,若,则下列结论不正确的是()A. B.点到直线的距离为C. D.12.下列事件中,属于随机事件的是().A.凸多边形的内角和为B.凸多边形的外角和为C.四边形绕它的对角线交点旋转能与它本身重合D.任何一个三角形的中位线都平行于这个三角形的第三边二、填空题(每题4分,共24分)13.用4个全等的正八边形拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则的值为__________.14.菱形的周长是20,一条对角线的长为6,则它的面积为_____.15.当0<m<3时,一元二次方程x2+mx+m=0的根的情况是_______.16.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知_____的成绩更稳定.17.实数a在数轴上的位置如图示,化简:_____.18.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为_____三、解答题(共78分)19.(8分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?20.(8分)(阅读理解)对于任意正实数、,∵,∴∴,只有当时,等号成立.(数学认识)在(、均为正实数)中,若为定值,则,只有当时,有最小值.(解决问题)(1)若时,当_____________时,有最小值为_____________;(2)如图,已知点在反比例函数的图像上,点在反比例函数的图像上,轴,过点作轴于点,过点作轴于点.求四边形周长的最小值.21.(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?22.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.23.(10分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.24.(10分)已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=4,BC=10.求:梯形两腰AB、CD的长.25.(12分)如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=2,AD=,求DE的长.26.如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2km,BB′=4km,且A′B′=8km.(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.(2)求这个最短距离.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S1的方法不同,因此需分情况讨论,由S1=S1和S1+S1=8可以求出S1=S1=2.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.【详解】①当点P在BO上,0<x≤1时,如图1所示.∵四边形ABCD是菱形,AC=2,BD=2,∴AC⊥BD,BO=BD=1,AO=AC=1,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=2S△BFP=2××x•=x1.∴S1=8-x1.②当点P在OD上,1<x≤2时,如图1所示.∵AB=2,BF=,∴AF=AB-BF=2.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=2-.∴tan∠FAM=.∴FM=(2-).∴S△AFM=AF•FM=(2-)•(2-)=(2-)1.∵四边形PFBG关于BD对称,四边形QEDH与四边形FPBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S1=2S△AFM=2×(2-)1=(x-8)1.∴S1=8-S1=8-(x-8)1.综上所述:当0<x≤1时,S1=x1,S1=8-x1;当1<x≤2时,S1=8-(x-8)1,S1=(x-8)1.当点P在BO上时,0<x≤1.∵S1=S1,S1+S1=8,∴S1=2.∴S1=x1=2.解得:x1=1,x1=-1.∵1>1,-1<0,∴当点P在BO上时,S1=S1的情况不存在.当点P在OD上时,1<x≤2.∵S1=S1,S1+S1=8,∴S1=2.∴S1=(x-8)1=2.解得:x1=8+1,x1=8-1.∵8+1>2,1<8-1<2,∴x=8-1.综上所述:若S1=S1,则x的值为8-1.故选A.【点睛】本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.2、D【解析】
根据三角形中位线定理得到A1B1=12AB,A1C1=12AC,B1C1=1【详解】∵点A1、B1、C1分别是OA、OB、OC的中点,
∴A1B1=12AB,A1C1=12AC,B1C1=12BC,
∴△ABC与△A1B1C1是位似图形,A正确;
△ABC与是△A1B1C1相似图形,B正确;
△ABC与△A1B1C1的周长比为2:1,C正确;
△ABC与△A1B1C1的面积比为4:1,D错误;
【点睛】考查的是位似变换,掌握位似变换的概念、相似三角形的性质是解题的关键.3、B【解析】
根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.【点睛】本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.4、C【解析】
由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.5、A【解析】
延长AD、BF交于E,过点E作EM⊥BG,根据F是中点得到△CBF≌△DEF,得到BE=2BF=4,根据得到BM=BE=2,ME=2,故MG=1,再根据勾股定理求出EG的长,再得到DE的长即可求解.【详解】延长AD、BF交于E,∵F是中点,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,过点E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G为AD中点,∴DG=AD=DE,∴DE==,故BC=,故选A.【点睛】此题主要考查平行四边形的线段求解,解题的关键是熟知全等三角形的判定及勾股定理的运用.6、C【解析】
直接利用中心对称图形的定义结合概率公式得出答案.【详解】∵平行四边形、圆和正方形是中心对称图形,∴在看不见图形的情况下随机抽出1张卡片,这张卡片上的图形是中心对称图形的概率是:.故选:C.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、B【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.【详解】∵四边形ABCD是平行四边形,∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG,∴EG=EF=AG=BG,无法证明GE=GF,故③错误,∵BG=EF,BG∥EF∥CD,∴四边形BEFG是平行四边形,故②正确,∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,故选B.【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.8、A【解析】
根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.【详解】解:设点的坐标为,,则,,,故选:.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.9、C【解析】
根据众数的含义:在一组数据中出现次数最多的数叫做这组数据的众数.【详解】在这组数据中6出现3次,次数最多,所以众数为6,故选:C.【点睛】本题考查众数的定义,学生们熟练掌握即可解答.10、A【解析】
根据相关概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目)进行分析.【详解】根据题意可得:2000名学生的视力情况是总体,
2000名学生的视力是样本,
2000是样本容量,
每个学生的视力是总体的一个个体.
故选A.【点睛】考查了总体、个体、样本、样本容量.解题关键是理解相差概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目).11、B【解析】
A、首先利用已知条件根据边角边可以证明△APD≌△AEB;B、利用全等三角形的性质和对顶角相等即可解答;C、由(1)可得∠BEF=90°,故BE不垂直于AE过点B作BP⊥AE延长线于P,由①得∠AEB=135°所以∠PEB=45°,所以△EPB是等腰Rt△,于是得到结论;D、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD中,AB=AD,∵AF⊥AE,∴∠BAE+∠BAF=90°,又∵∠DAF+∠BAF=∠BAD=90°,∴∠BAE=∠DAF,在△AFD和△AEB中,∴△AFD≌△AEB(SAS),故A正确;∵AE=AF,AF⊥AE,∴△AEF是等腰直角三角形,∴∠AEF=∠AFE=45°,∴∠AEB=∠AFD=180°−45°=135°,∴∠BEF=135°−45°=90°,∴EB⊥ED,故C正确;∵AE=AF=,∴FE=AE=2,在Rt△FBE中,BE=,∴S△APD+S△APB=S△APE+S△BPE,=,故D正确;过点B作BP⊥AE交AE的延长线于P,∵∠BEP=180°−135°=45°,∴△BEP是等腰直角三角形,∴BP=,即点B到直线AE的距离为,故B错误,故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.12、C【解析】
随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:、凸n多边形的内角和,故不可能为,所以凸多边形的内角和为是不可能事件;、所有凸多边形外角和为,故凸多边形的外角和为是必然事件;、四边形中,平行四边形绕它的对角线交点旋转能与它本身重合,故四边形绕它的对角线交点旋转能与它本身重合是随机事件;、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、1【解析】
根据正六边形的一个内角为120°,可求出正六边形密铺时中间的正多边形的内角,继而可求出n的值.【详解】解:两个正六边形拼接,一个公共点处组成的角度为240°,故如果要密铺,则中间需要一个内角为120°的正多边形,而正六边形的内角为120°,所以中间的多边形为正六边形,故n=1.故答案为:1.【点睛】此题考查了平面密铺的知识,解答本题的关键是求出在密铺条件下中间需要的正多边形的一个内角的度数,进而得到n的值,难度不大.14、1.【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.【详解】由题意得,∵菱形ABCD∴,AC⊥BD∴∴∴考点:本题考查的是菱形的性质【点睛】解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.15、无实数根【解析】
根据一元二次方程根的判别式判断即可【详解】一元二次方程x2+mx+m=0,则△=m2-4m=(m-2)2-4,当0<m<3时,△<0,故无实数根【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.16、甲【解析】
根据方差的定义,方差越小数据越稳定.【详解】解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.故答案为甲;【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、1.【解析】
由数轴可知,1<a<2,从而得到a-1>0.a-2<0.再根据绝对值的性质:和二次根式的性质:化简即可.【详解】解:∵1<a<2,∴a-1>0.a-2<0.∴a-1+2-a=1故答案为:1.【点睛】本题考查了绝对值和二次根式的性质,掌握它们的性质是解题的关键.18、3.【解析】
由直角三角形的性质得到AC=2OB=10,利用勾股定理求出AB=CD=6,再根据三角形的中位线得到OM的长度.【详解】∵四边形ABCD是矩形,∴∠ABC=∠D=90,AB=CD,∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=,∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线,∴OM=CD=3,故填:3.【点睛】此题考查矩形的性质,矩形的一条对角线将矩形分为两个全等的直角三角形,根据直角三角形斜边中线等于斜边的一半求得AC,根据勾股定理求出CD,在利用三角形的中位线求出OM.三、解答题(共78分)19、(1)见解析;(2)时,四边形CEDF是矩形.【解析】
(1)先证明△GED≌△GFC,从而可得GE=GF,再根据对角线互相平分的四边形是平行四边形即可证得结论;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=90°,求得BP=3cm,再证明△ABP≌△CDE,可得∠CED=∠APB=90°,再根据有一个角是直角的平行四边形是矩形即可得.【详解】(1)四边形ABCD是平行四边形,∴AD//BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵GD=GC,∴△GED≌△GFC,∴GE=GF,∵GD=GC,GE=GF,∴四边形CEDF是平行四边形;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=∠APC=90°,∵∠B=60°,∴∠PAB=90°-∠B=30°,∴BP=AB==3cm,四边形ABCD是平行四边形,∴∠CDE=∠B=60°,DC=AB=6cm,AD=BC=10cm,∵AE=7cm,∴DE=AD-AE=3cm=BP,∴△ABP≌△CDE,∴∠CED=∠APB=90°,又∵四边形CEDF是平行四边形,∴平行四边形CEDF是矩形,即当AE=7cm时,四边形CEDF是矩形.【点睛】本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.20、(1)1,1;(1)2.【解析】
(1)根据题意,利用完全平方式即可求解;
(1)根据反比例函数的解析式,设出A和B的坐标,然后表示出周长,再根据上面的知识求解即可;【详解】解:(1)1,1.(1)解:设,则,∴四边形周长.∴四边形周长的最小值为2.【点睛】此题属于反比例函数综合题,考查了几何不等式的应用,理解在
(a,
b均为正实数)中,若ab为定值k,则只有当a=b时,a+b有最小值是关键.21、(1)见解析(2)成立【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∴△CBE≌△CDF(SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.CE=CF∵∠GCE=∠GCF,GC=GC∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.考点:1.正方形的性质;2.全等三角形的判定与性质.22、(1)证明见解析;(1).【解析】
(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可.【详解】证明:,,四边形OCED是平行四边形,矩形ABCD,,,,,四边形OCED是菱形;在矩形ABCD中,,,,,,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,,,.【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.23、(1)证明见解析(2)【解析】分析:(1)先根据平行四边形的性质,得出OD=OB,再根据OE=OB,得出OE=OB=OD,最后根据三角形内角和定理,求得∠OEB+∠OED=90°,即可得出结论.(2)证明△OFD为直角三角形,得出∠OFD=90°.在Rt△CED中,由勾股定理求出CD=1.由三角形面积求出EF=.在Rt△CEF中,根据勾股定理求出CF即可.详解:(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国六位机械计数器市场调查研究报告
- 2025年转向中间臂支架项目可行性研究报告
- 常州2025年江苏常州市卫生健康委员会直属事业单位招聘高层次紧缺专业人才269人(定期)笔试历年参考题库附带答案详解
- 2025年生化仪器项目可行性研究报告
- 成都2024年四川成都经开区(龙泉驿区)招聘教育人才11人笔试历年参考题库附带答案详解
- 2025年智能程序温控箱项目可行性研究报告
- 2025至2031年中国喷灌机管道行业投资前景及策略咨询研究报告
- 2025年双色底项目可行性研究报告
- 2025至2030年中国袋装水简易连接器数据监测研究报告
- 2025年X射线探测器项目可行性研究报告
- 2024-2030年中国免疫细胞存储行业发展模式及投资战略分析报告
- 家庭清洁课件教学课件
- 湖南财政经济学院《常微分方程》2023-2024学年第一学期期末试卷
- 2011年公务员国考《申论》真题卷及答案(地市级)
- 《篮球体前变向运球技术》教案(共三篇)
- 多元化评价体系构建
- 部编版六年级下册道德与法治全册教案教学设计
- DBJ04∕T 290-2012 袖阀管注浆加固地基技术规程
- GB/T 17775-2024旅游景区质量等级划分
- 灯笼彩灯安装合同范本
- 物流无人机垂直起降场选址与建设规范
评论
0/150
提交评论