2024年河南省周口市西华县数学八年级下册期末统考试题含解析_第1页
2024年河南省周口市西华县数学八年级下册期末统考试题含解析_第2页
2024年河南省周口市西华县数学八年级下册期末统考试题含解析_第3页
2024年河南省周口市西华县数学八年级下册期末统考试题含解析_第4页
2024年河南省周口市西华县数学八年级下册期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年河南省周口市西华县数学八年级下册期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若代数式有意义,则实数x的取值范围是A. B.且 C.且 D.2.下列说法正确的是().A.掷一颗骰子,点数一定小于等于6;B.抛一枚硬币,反面一定朝上;C.为了解一种灯泡的使用寿命,宜采用普查的方法;D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.3.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大4.已知一个正多边形的每个外角等于,则这个正多边形是()A.正五边形 B.正六边形 C.正七边形 D.正八边形5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)6.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有A.4个 B.3个 C.2个 D.1个7.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.4 B.6 C.8 D.108.点M(-2,3)关于x轴对称点的坐标为A.(-2,-3)B.(2,-3)C.(-3,-2)D.(2,3)9.已知四边形ABCD是平行四边形,下列结果正确的是()A.当AB=BC时,它是矩形 B.时,它是菱形C.当∠ABC=90°时,它是菱形 D.当AC=BD时,它是正方形10.在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6,3,6,5,5,6,9.这组数据的中位数和众数分别是()A.5,5 B.6,6 C.6,5 D.5,6二、填空题(每小题3分,共24分)11.一组数据5、7、7、x中位数与平均数相等,则x的值为________.12.解分式方程+=时,设=y,则原方程化为关于y的整式方程是______.13.反比例函数y=的图象同时过A(-2,a)、B(b,-3)两点,则(a-b)2=__.14.若平行四边形中两个内角的度数比为1:2,则其中一个较小的内角的度数是________°.15.如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.16.一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为_____(不需要写出自变量取值范围)17.等边三角形的边长是4,则高AD_________(结果精确到0.1)18.点P(m-1,2m+3)关于y轴对称的点在第一象限,则m的取值范围是_______.三、解答题(共66分)19.(10分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由.20.(6分)如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长.21.(6分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.22.(8分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.(1)若该城市某户6月份用水18吨,该户6月份水费是多少?(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.23.(8分)如图1,点是正方形边上任意一点,以为边作正方形,连接,点是线段中点,射线与交于点,连接.(1)请直接写出和的数量关系和位置关系.(2)把图1中的正方形绕点顺时针旋转,此时点恰好落在线段上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形绕点顺时针旋转,此时点、恰好分别落在线段、上,连接,如图3,其他条件不变,若,,直接写出的长度.24.(8分)如图,将平行四边形的对角线向两个方向延长,分别至点和点,且使.求证:四边形是平行四边形.25.(10分)在平面直角坐标系中,已知直线与轴交于点,与轴交于点,点为的中点,点是线段上的动点,四边形是平行四边形,连接.设点横坐标为.(1)填空:①当________时,是矩形;②当________时,是菱形;(2)当的面积为时,求点的坐标.26.(10分)如图①,已知△ABC中,∠BAC=90°,AB="AC,"AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=DE+CE.(2)若直线AE绕A点旋转到图②位置时(BD<CE),其余条件不变,问BD与DE、CE的数量关系如何?请给予证明;(3)若直线AE绕A点旋转到图③位置时(BD>CE),其余条件不变,问BD与DE、CE的数量关系如何?请直接写出结果,不需证明.(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

直接利用二次根式的定义结合分式有意义的条件得出答案.【详解】∵代数式有意义,∴x﹣1≥0,且x﹣1≠0,解得:x≥1且x≠1.故选B.【点睛】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题的关键.2、A【解析】

对各项的说法逐一进行判断即可.【详解】A.掷一颗骰子,点数一定小于等于6,正确;B.抛一枚硬币,反面不一定朝上,错误;C.为了解一种灯泡的使用寿命,宜采用抽样调查的方法,错误;D.“明天的降水概率为90%”,表示明天会有90%的几率下雨,错误;故答案为:A.【点睛】本题考查了命题的问题,掌握概率的性质、概率统计的方法是解题的关键.3、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为==188,方差为S2==;换人后6名队员身高的平均数为==187,方差为S2==∵188>187,>,∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、B【解析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B.点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.5、A【解析】

关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.6、B【解析】

根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,

利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【详解】解:∵四边形ABCD为正方形,

∴AB=AD=DC,∠BAD=∠D=90°,

而CE=DF,

∴AF=DE,

在△ABF和△DAE中

∴△ABF≌△DAE,

∴AE=BF,所以(1)正确;

∴∠ABF=∠EAD,

而∠EAD+∠EAB=90°,

∴∠ABF+∠EAB=90°,

∴∠AOB=90°,

∴AE⊥BF,所以(2)正确;

连结BE,

∵BE>BC,

∴BA≠BE,

而BO⊥AE,

∴OA≠OE,所以(3)错误;

∵△ABF≌△DAE,

∴S△ABF=S△DAE,

∴S△ABF-S△AOF=S△DAE-S△AOF,

∴S△AOB=S四边形DEOF,所以(4)正确.

故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.7、D【解析】

根据,将代数式变形,再代值计算即可.【详解】解:,当,时原式,故选:D.【点睛】本题考查了与二次根式有关的化简代值计算,需要先将代数式化为较简便的形式,再代值计算.8、A【解析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.解:∵3的相反数是-3,

∴点M(-2,3)关于x轴对称点的坐标为(-2,-3),

故答案为A点评:考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数9、B【解析】

根据矩形、菱形、正方形的的判定方法判断即可.【详解】解:A、当AB=BC时,平行四边形ABCD为菱形,所以A选项的结论错误;

B、当AC⊥BD时,平行四边形ABCD为菱形,所以B选项的结论正确;

C、当∠ABC=90°时,平行四边形ABCD为矩形,所以C选项的结论错误;

D、当AC=BD时,平行四边形ABCD为矩形,所以D选项的结论不正确.

故选:B.【点睛】本题考查了正方形的判定,也考查了菱形、矩形的判定方法.正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角.10、B【解析】

根据中位数的概念:是按顺序排列的一组数据中居于中间位置的数,将这一组数据进行排列,即可得出中位数;根据众数的定义:是一组数据中出现次数最多的数值,即可判定众数.【详解】解:将这一组数按照从高到低的顺序排列,得3,5,5,6,6,6,9,则其中位数为6;这组数中出现次数最多的数是6,即为众数,故答案为B.【点睛】此题主要考查对中位数和众数的理解,熟练掌握其内涵,即可解题.二、填空题(每小题3分,共24分)11、5或2【解析】试题分析:根据平均数与中位数的定义就可以解决.中位数可能是7或1.解:当x≥7时,中位数与平均数相等,则得到:(7+7+5+x)=7,解得x=2;当x≤5时:(7+7+5+x)=1,解得:x=5;当5<x<7时:(7+7+x+5)÷4=(x+7)÷2,解得x=5,舍去.所以x的值为5或2.故填5或2.考点:中位数;算术平均数.12、y2-y+1=1【解析】

根据换元法,可得答案.【详解】解:设=y,则原方程化为y+-=1两边都乘以y,得y2-y+1=1,故答案为:y2-y+1=1.【点睛】本题考查了解分式方程,利用换元法是解题关键.13、【解析】

先将A(-2,a)、B(b,-3)两点的坐标代入反比例函数的解析式y=,求出a、b的值,再代入(a-b)2,计算即可.【详解】∵反比例函数y=的图象同时过A(−2,a)、B(b,−3)两点,∴a==−1,b==,∴(a−b)2=(−1+)2=.故答案为.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式14、60°【解析】

根据平行四边形的性质得出,推出,根据,求出即可.【详解】四边形是平行四边形,,,,.故答案为:.【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.15、【解析】

连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.【详解】解:如图,连接OB,过点O作OD⊥AB于D,∵在的垂直平分线上,∴OB=OC,∵,,,∴OA2+OB2=32+42=25=AB2,∴△ABC为直角三角形,∵S△ABO=AO·OB=AB·OD,∴OD==.故答案为.【点睛】此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.16、y=3x+1【解析】

根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+1.代入求解.【详解】弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为y=3x+1,故答案为y=3x+1【点睛】此题考查根据实际问题列一次函数关系式,解题关键在于列出方程17、3.1【解析】

根据等边三角形的性质及勾股定理进行计算即可.【详解】如图,三角形ABC为等边三角形,AD⊥BC,AB=4,∵三角形ABC为等边三角形,AD⊥BC,∴BD=CD=2,在中,.故答案为:3.1.【点睛】本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.18、-1.5<m<1【解析】

首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式组,然后求解不等式组即可得出m的取值范围.【详解】解:∵P(m-1,2m+3)关于y轴对称的点在第一象限,

∴P点在第二象限,

解得:-1.5<m<1,

故答案为:-1.5<m<1.【点睛】本题考查关于y轴对称的点的坐标特点,各象限内点的坐标符号,解一元一次不等式组.解答本题的关键是判断出P点所在象限并据此列出不等式组.三、解答题(共66分)19、(1)EB=FD;(2)EB=FD,证明见解析;(3)∠EGD不发生变化.【解析】

(1)利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△FAD≌△BAE,由全等三角形的性质即可得到EB=FD;(2)利用长方形的性质、等边三角形的性质和全等三角形的证明方法可证明△FAD≌△BAE,由全等三角形的性质即可得到EB=FD;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不会发生变化,是一个定值,为60°.【详解】解:(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:不会发生改变;同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.【点睛】本题考查了正方形的性质、全等三角形的判定和性质,等边三角形的性质以及矩形的性质,题目的综合性很强,难度也不小,解题的关键是对特殊几何图形的性质要准确掌握.20、3【解析】

根据AD⊥BC得出∠ADB=∠ADC=90°,然后得出RT△BDF和RT△ADC全等,从而得出AD=BD=3,然后根据Rt△ABD的勾股定理求出AB的长度.【详解】∵AD⊥BC∴∠ADB=∠ADC=90°在RT△BDF和RT△ADC中,∴RT△BDF≌RT△ADC(HL)∴AD=BD=3在RT△ABD中,AB2=AD2+BD2AB2=32+32AB=3考点:(1)、三角形全等;(2)、勾股定理21、(1)证明见解析;(2)【解析】

(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC=60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.【详解】(1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.考点:三角形的中位线定理,勾股定理.22、(1)该户6月份水费是45元;(2)y=3.3x-1.【解析】

(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.【详解】解:(1)根据题意:该户用水18吨,按每吨2.5元收费,2.5×18=45(元),答:该户6月份水费是45元;(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,应缴水费y=2.5×20+3.3×(x-20),整理后得:y=3.3x-1,答:y关于x的函数关系式为y=3.3x-1.【点睛】本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.23、(1);(2)见解析;(3).【解析】

(1)证明ΔFME≌ΔAMH,得到HM=EM,根据等腰直角三角形的性质可得结论.(2)根据正方形的性质得到点A、E、C在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知.(3)如图3中,连接EC,EM,由(1)(2)可知,△CME是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM=ME,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,∴△FME≌△BMH(ASA),∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如图2,连接,∵四边形和四边形是正方形,∴∴点在同一条直线上,∵,为的中点,∴,,∴,∵,∴,∵,∴∴,∴,∴.(3)如图3中,连接EC,EM.由(1)(2)可知,△CME是等腰直角三角形,∵∴CM=EM=【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.24、详见解析【解析】

由四边形ABCD是平行四边形易知OA=OC,OC=OD,再证得OE=OF,即可得出结论.【详解】证明:连接,设与交于点四边形是平行四边形.,又四边形是平行四边形,【点睛】此题考查了平行四边形的性质和判定,全等三角形的判定和性质,解题时要注意选择适宜的判定方法.25、(1)4,;(2)(1,)【解析】

(1)根据题意可得OB=6,OA=8,假设是矩形,那么CD⊥BO,结合三角形中位线性质可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论