江苏省盐城市亭湖初级中学2024年八年级下册数学期末调研模拟试题含解析_第1页
江苏省盐城市亭湖初级中学2024年八年级下册数学期末调研模拟试题含解析_第2页
江苏省盐城市亭湖初级中学2024年八年级下册数学期末调研模拟试题含解析_第3页
江苏省盐城市亭湖初级中学2024年八年级下册数学期末调研模拟试题含解析_第4页
江苏省盐城市亭湖初级中学2024年八年级下册数学期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市亭湖初级中学2024年八年级下册数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高2.无论x取什么数,总有意义的分式是()A.5xx4+3 B.2x7x+83.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生 B.调查七、八、九年级各30名学生C.调查全体女生 D.调查全体男生4.如图,在中,,,点D,E分别是AB,BC的中点,连接DE,CD,如果,那么的周长()A.28 B.28.5 C.32 D.365.如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是()A.5 B.4 C.3 D.26.已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.57.点(-2,3)关于x轴的对称点为().A.(-2,-3) B.(2,-3) C.(2,3) D.(3,-2)8.已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()A.11 B.6.5 C.7 D.7.59.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个10.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,点E、F分别在AB、CD上,EF∥BC,EF交BD于点G.若EG=5,DF=2,则图中两块阴影部分的面积之和为______.12.如图,在中,,,,P为BC上一动点,于E,于F,M为EF的中点,则AM的最小为___.13.若,则3a______3b;______用“”,“”,或“”填空14.关于x的方程(a≠0)的解x=4,则的值为__.15.如图,将一个智屏手机抽象成一个的矩形,其中,,然后将它围绕顶点逆时针旋转一周,旋转过程中、、、的对应点依次为、、、,则当为直角三角形时,若旋转角为,则的大小为______.16.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.17.已知反比例函数的图像过点、,则__________.18.在函数y=中,自变量x的取值范围是_________.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE是菱形;(2)连接AC,若AC平分∠BAD,BC=2,求BD的长.20.(6分)如图,直线l1:y=﹣2x与直线l2:y=kx+b在同一平面直角坐标系内交于点P.(1)直接写出不等式﹣2x>kx+b的解集______;(2)设直线l2与x轴交于点A,△OAP的面积为12,求l2的表达式.21.(6分)计算:(1)﹣;(2)22.(8分)先化简,再求值:,且x为满足﹣3<x<2的整数.23.(8分)某县教育局为了了解学生对体育立定跳远()、跳绳()、掷实心球()、中长跑()四个项目的喜爱程度(每人只选一项),确定中考体育考试项目,特对八年级某班进行了调查,并绘制成如下频数、频率统计表和扇形统计图:(1)求出这次调查的总人数;(2)求出表中的值;(3)若该校八年级有学生1200人,请你算出喜爱跳绳的人数,并发表你的看法.24.(8分)如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF(1)求证:CD=EF;(2)求EF的长.25.(10分)文具商店里的画夹每个定价为20元,水彩每盒5元,其制定两种优惠办法:①买一个面夹赠送一盒水彩;②按总价的92%付款.一美术教师欲购买画夹4个,水彩若干盒(不少于4盒),设购买水彩x盒,付款y元.(1)试分别建立两种优惠办法中y与x的函数关系式;(2)美术老师购买水彩30盒,通过计算说明那种方法更省钱.26.(10分)已知关于x的方程(m为常数)(1)求证:不论m为何值,该方程总有实数根;(2)若该方程有一个根是,求m的值。

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、A【解析】

根据偶次幂具有非负性可得x4+3>0,再由分式有意义的条件可得答案.【详解】∵x4⩾0,∴x4+3>0,∴无论x取什么数时,总有意义的分式是5xx故选:A.【点睛】此题考查分式有意义的条件,解题关键在于掌握其性质.3、B【解析】【分析】如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.要抽出具有代表性的调查样本.【详解】A.只调查九年级全体学生,没有代表性;B.调查七、八、九年级各30名学生,属于分层抽样,有代表性;C.只调查全体女生,没有代表性;D.只调查全体男生,没有代表性.故选B.【点睛】本题考核知识点:抽样调查.解题关键点:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性.4、C【解析】

根据三角形中位线定理得到AC=2DE=7,AC//DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=7,AC//DE,AC+BC=7+24=625,AB=25=625,∴AC+BC=AB,∴∠ACB=90°,∵AC//DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=32,故选:C.【点睛】此题考查三角形中位线定理,线段垂直平分线的性质,勾股定理逆定理,解题关键在于求出∠ACB=90°.5、A【解析】

先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.【详解】∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,∴A(1,1),B(2,),又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,∴C(1,),D(2,),∴AC=k-1,BD=-,∴S△AOC+S△ABD==3,∴k=5,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.6、D【解析】试题解析:∵=,且是整数,∴2是整数,即1n是完全平方数,∴n的最小正整数为1.故选D.点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.7、A【解析】

根据关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,即可求出.【详解】解:∵关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数∴点(-2,3)关于x轴的对称点为:(-2,-3)故选A.【点睛】此题考查的是求一个点关于x轴对称的对称点的坐标,掌握关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,是解决此题的关键.8、A【解析】

由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.【详解】∵正方形ABCD的面积是25,

∴AB=BC=BP=PQ=QC=5,

又∵S菱形BPQC=PQ×EC=5×EC=20,

∴S菱形BPQC=BC•EC,

即20=5•EC,

∴EC=4

在Rt△QEC中,EQ==3;

∴PE=PQ-EQ=2,

∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.故选A.【点睛】此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.9、C【解析】

根据中心对称图形的概念求解.【详解】第一个,是中心对称图形,故选项正确;第二个,是中心对称图形,故选项正确;第三个,不是中心对称图形,故选项错误;第四个,是中心对称图形,故选项正确.故选C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【解析】

根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.二、填空题(每小题3分,共24分)11、1.【解析】

由矩形的性质可得S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,可得S四边形AEGM=S四边形GFCN,可得S△AEG=S△FGC=5,即可求解.【详解】解:如图,过点G作MN⊥AD于M,交BC于N,

∵EG=5,DF=2,

∴S△AEG=×5×2=5

∵AD∥BC,MN⊥AD

∴MN⊥BC,且∠BAD=∠ADC=∠DCB=∠ABC=90°,EF∥BC,

易证:四边形AMGE是矩形,四边形MDFG是矩形,四边形GFCN是矩形,四边形EGNB是矩形

∴S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,

∴S四边形AEGM=S四边形GFCN,

∴S△AEG=S△FGC=5

∴两块阴影部分的面积之和为1.

故答案为:1.【点睛】本题考查矩形的性质,证明S△AEG=S△FGC=5是解题的关键.12、2.1.【解析】

解:在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CAB,∴∴∴AP最短时,AP=1.8∴当AM最短时,AM==2.1故答案为:2.1.13、【解析】

根据不等式的性质逐一进行解答即可得.【详解】若,根据不等式性质2,两边同时乘以3,不等号方向不变,则;根据不等式性质3,不等式两边同时乘以-1,不等号方向改变,则有,再根据不等式性质1,两边同时加上1,不等号方向不变,则,故答案为:;.【点睛】本题考查了不等式性质,熟练掌握不等式的性质是解题的关键.不等式的性质:不等式的两边加上或减去同一个数或式子,不等号的方向不变;不等式两边同时乘以或除以同一个不为0的正数,不等号的方向不变;不等式两边同时乘以或除以同一个不为0的负数,不等号的方向改变.14、4【解析】

将x=4代入已知方程求得b=4a,然后将其代入所以的代数式求值.【详解】∵关于x的方程(a≠0)的解x=4,∴,∴b=4a,∴=,故答案是:4.【点睛】此题考查分式方程的解,分式的化简求值,解题关键在于求得b=4a15、或或【解析】

根据题中得到∠ADE=30°,则∠DAE=60°;这是有两种情况,一种AE在AD的左侧,一种AE在AD的右侧;另外,当旋转180°,AE和AB共线时,∠EAD=90°,△ADE也是直角三角形.【详解】解:要使△ADE为直角三角形,由于AE=8,AD=16,即只需满足∠ADE=30°即可.当∠DAE=30°,则∠DAE=60°当AE在AD的右侧时,旋转了30°;当AE在AD的左侧,即和BA的延长线的夹角为30°,即旋转了150°.另外,当旋转到AE和AB延长线重合时,∠DAE=90°,三角形ADE也是直角三角形;所以答案为:或或【点睛】本题考查了旋转和直角三角形的相关知识,其中对旋转过程中出现直角的讨论是解答本题的关键.16、1260【解析】

首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.17、【解析】

根据反比例函数的增减性,结合点A和点B的横坐标的大小,即可得到答案.【详解】∵m2≥0,∴m2+2>m2+1,∵反比例函数y=,k>0,∴当x>0时,y随着x的增大而减小,∴y1>y2,故答案为:>.【点睛】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的增减性是解题的关键.18、x≤1【解析】

根据二次根式的性质列出不等式,求出不等式的取值范围即可.【详解】若使函数y=有意义,∴1−x≥0,即x≤1.故答案为x≤1.【点睛】本题主要考查了函数自变量取值范围的知识点,注意:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、解答题(共66分)19、(1)详见解析;(2)BD【解析】

(1)由ED=BC,AD∕∕BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)可证AB=BC,由勾股定理可求出BD=【详解】(1)∵E为AD中点,∴AE=ED;∵AD=2BC,∴ED=BC;∵AD∕∕BC,∴四边形BCDE是平行四边形.∵∠ABD=90°,E为AD的中点,∴BE=ED=AE.∴平行四边形BCDE是菱形.(2)∵AC平分∠BAC,∴∠BAC=∠DAC;∵AD∕∕BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴AB=BC;在RtΔABD中,AB=BC=2,AD=2BC=4,BD=4【点睛】本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.20、(1)x<3;(2)l2的表达式为y=6x-1【解析】

(1)求不等式-2x>kx+b的解集就是求当自变量x取什么值时,y=-2x的函数值大;(2)求△OAP的面积,只要求出OA边上的高就可以,即求两个函数的交点的纵坐标的绝对值.【详解】解:(1)从图象中得出当x<3时,直线l1:y=-2x在直线l2:y=kx+b的上方,∴不等式-2x>kx+b的解集为x<3,故答案为x<3;(2)∵点P在l1上,∴y=-2x=-6,∴P(3,-6),∵S△OAP=×6×OA=12,∴OA=4,A(4,0),∵点P和点A在l2上,∴∴∴l2:y=6x-1.【点睛】此题考查一次函数问题,关键是根据求线段的长度的问题一般是转化为求点的坐标的问题来解决.21、(1)﹣;(2)13﹣4.【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=3﹣﹣2=﹣;(2)原式=5﹣4+4+(13﹣9)=9﹣4+4=13﹣4.【点睛】本题考查了二次根式的运算,以及完全平方公式和平方差公式的运算,解题的关键是正确的运用运算法则进行运算.22、-5【解析】

根据分式的运算法则即可求出答案.【详解】原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23、(1)60;(2);(3)240人,看法见解析【解析】

(1)用C科目人数除以其所占比例;

(2)根据频数=频率×总人数求解可得;

(3)总人数乘以样本中B科目人数所占比例,根据图表得出正确的信息即可.【详解】解:(1)这次调查的总人数为6÷(36÷360)=60(人);

(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);

(3)喜爱跳绳的人数为1200×0.2=240(人),

由扇形统计图知喜爱立定跳远的人数占总人数的一半,是四个学科中人数最多的科目.【点睛】本题考查了扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.24、(1)见解析;(2)EF=.【解析】

(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC,得出四边形CDEF是平行四边形,即可得出CD=EF;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长即可得答案.【详解】(1)∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵使CF=BC,∴DE=FC,∴四边形CDEF是平行四边形,∴CD=EF.(2)∵四边形DEFC是平行四边形,∴CD=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论