云南省师宗县2024届数学八年级下册期末联考模拟试题含解析_第1页
云南省师宗县2024届数学八年级下册期末联考模拟试题含解析_第2页
云南省师宗县2024届数学八年级下册期末联考模拟试题含解析_第3页
云南省师宗县2024届数学八年级下册期末联考模拟试题含解析_第4页
云南省师宗县2024届数学八年级下册期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省师宗县2024届数学八年级下册期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)²=182 B.50+50(1+x)+50(1+x)²=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)²=1822.下列调查中,最适合采用全面调查(普查)方式的是()A.对无锡市空气质量情况的调查 B.对某校七年级()班学生视力情况的调查C.对某批次手机屏使用寿命的调查 D.对全国中学生每天体育锻炼所用时间的调查3.已知函数y=kx-k的图象如图所示,则k的取值为()A.k<0 B.k>0 C.k≥0 D.k≤04.若点P(a,b)是正比例函数y=-2A.2a+3b=0 B.2a-3b=0 C.3a+2b=0 D.3a-2b=05.如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N.则DM+CN的值为(用含a的代数式表示)()A.a B.a C. D.6.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.7.一次函数的图象如图所示,当时,x的取值范围是A. B. C. D.8.若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是()度A.2520 B.2880 C.3060 D.32409.要使分式2x-1有意义,则x的取值范围是(

A.x>1 B.x≠1 C.x<1 D.x≠-1.10.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC二、填空题(每小题3分,共24分)11.已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为___.12.如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.13.如果分式有意义,那么的取值范围是____________.14.若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.15.化简________.16.已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。17.将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.18.当x=4时,二次根式的值为______.三、解答题(共66分)19.(10分)如图,中,.(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)(2)在(1)的条件下,求证:.20.(6分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:ΔDFM≅ΔBEN;(2)四边形AMCN是平行四边形吗?请说明理由.21.(6分)已知平面直角坐标系中有一点(,).(1)若点在第四象限,求的取值范围;(2)若点到轴的距离为3,求点的坐标.22.(8分)解不等式组:并在数轴上表示解集.23.(8分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.24.(8分)如图所示,平行四边形中,和的平分线交于边上一点,(1)求的度数.(2)若,则平行四边形的周长是多少?25.(10分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.26.(10分)如图,直线交x轴于点A,直线CD与直线相交于点B,与x轴y轴分别交于点C,点D,已知点B的横坐标为,点D的坐标为.(1)求直线CD的解析式;(2)求的面积.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产1万个,可列出方程.【详解】解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:50+50(1+x)+50(1+x)2=1.故选:B.【点睛】本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.2、B【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对无锡市空气质量情况的调查用抽样调查,错误;B、对某校七年级()班学生视力情况的调查用全面调查,正确;C、对某批次手机屏使用寿命的调查用抽样调查,错误;D、对全国中学生每天体育锻炼所用时间的调查用抽样调查,错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、A【解析】

根据一次函数的性质:当k<0时,函数y=kx-k中y随着x的增加而减小,可确定k的取值范围,再根据图像与y轴的交点即可得出答案.【详解】由图象知:函数y=kx-k中y随着x的增大而减小,所以k<0,∵交与y轴的正半轴,∴-k>0,∴k<0,故选:A.【点睛】考查了一次函数的图象与系数的关系,解题的关键是了解图象与系数的关系,难度不大.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.4、A【解析】

由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数y=-2∴b=-2∴2a+3b=0.故选A【点睛】本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.5、C【解析】

根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cos45°=,所以DM+CN=CDcos45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.【详解】∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,∴∠ADM=∠MDC=∠NCD=45°,∴=CD,在矩形ABCD中,AB=CD=a,∴DM+CN=acos45°=a.故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=6、B【解析】

由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.7、A【解析】

解:由图像可知,当时,x的取值范围是.故选A.8、B【解析】

n边形的内角和是(n-2)180°,由此列方程求解.【详解】设这个多边形的边数为n,则(n-2)180°=160°n,解得,n=18.则(n-2)180°=(18-2)×180°=2880°.故选B.【点睛】本题主要考查了多边形的内角和,n边形的内角和是(n-2)180°.9、B【解析】

根据分式有意义的条件即可解答.【详解】根据题意可知,x-1≠0,即x≠1.故选B.【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为0是解决问题的关键.10、D【解析】

平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.二、填空题(每小题3分,共24分)11、3.【解析】

讨论两种情形:①CD是对角线,②CD是边.CD是对角线时CF⊥直线y=x时,CD最小.CD是边时,CD=AB=2,通过比较即可得出结论.【详解】如图,由题意得:点C在直线y=x上,①如果AB、CD为对角线,AB与CD交于点F,当FC⊥直线y=x时,CD最小,易知直线AB为y=x﹣2,∵AF=FB,∴点F坐标为(2,﹣1),∵CF⊥直线y=x,设直线CF为y=﹣x+b′,F(2,﹣1)代入得b′=1,∴直线CF为y=﹣x+1,由,解得:,∴点C坐标.∴CD=2CF=2×.如果CD是平行四边形的边,则CD=AB=>3,∴CD的最小值为3.故答案为3.【点睛】本题考查平行四边形的性质、坐标与图形的性质、垂线段最短、勾股定理等知识,学会分类讨论是解题的关键,灵活运用垂线段最短解决实际问题,属于中考常考题型.12、13×(23)【解析】

已知正方形A1B1C1D1的边长为13,然后得到正方形A2B2C2D2的边长为,然后得到规律,即可求解.【详解】解:∵正方形A1B1C1D1的边长为13正方形A2B2C2D2的边长为1正方形A3B3C3D3的边长为13…,正方形A2018B2018C2018D2018的边长为13故答案为13【点睛】本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.13、【解析】试题分析:分式有意义的条件是分母不为零,故,解得.考点:分式有意义的条件.14、7,1【解析】

由题意知,,解得x=7,这组数据中7,1各出现两次,出现次数最多,故众数是7,1.15、【解析】

根据二次根式有意义条件求解即可.【详解】根据题意知:2-a≥0,a-2≥0,解得,a=2,∴3×2+0+0=6.故答案为:6.【点睛】此题主要考查了二次根式有意义的条件的应用,注意二次根式有意义的条件是被开方数是非负数.16、1或1.5或3.5【解析】

利用线段中点的定义求出DN,BM的长,再根据两点的运动速度及运动方向,分情况讨论:当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4;当2<t≤4时PN=t-2,MQ=12-3t,然后根据平行四边形的判定定理,由题意可知当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,分别建立关于t的方程,分别求解即可【详解】解:∵点M、N分别为边AB、DC的中点,∴DN=12DC=12BM=12AB=12∵点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,点P到达点C后点Q同时停止运动,∴DP=t,BQ=3t,当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4当2<t≤4时PN=t-2,MQ=12-3t∵AB∥CD∴PN∥MQ;∴当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,∴2-t=4-3t,或2-t=3t-4,或t-2=12-3t,解之:t=1或t=1.5或t=3.5.故答案为:t=1或1.5或3.5.【点睛】本题考查平行四边形的判定和性质,一元一次方程等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17、【解析】

根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【详解】解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),故答案为:(-2,-1).【点睛】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.18、0【解析】

直接将,代入二次根式解答即可.【详解】解:把x=4代入二次根式=0,故答案为:0【点睛】此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】

(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.【详解】解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,在和中,,∴≌(HL),∴AB=BN,∵,∴∠C=45°,又∵∠PNC=90°∴∠NPC=∠C=45°,∴PN=NC,∴BC=BN+NC=AB+PN=AB+AP.【点睛】本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.20、(1)见解析;(2)是,理由见解析【解析】

(1)根据平行四边形的性质得出∠BAD=∠BCD,AB∥CD,根据平行线的性质得出∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,求出∠ADF=∠EBC,根据全等三角形的判定得出即可;(2)根据全等求出DM=BN,求出AM=CN,根据平行四边形的判定得出即可.【详解】(1)证明:在▱ABCD中,∠BAD=∠BCD,∵AB∥CD,∴∠BAD=∠ADF,∠EBC=∠BCD,∴∠ADF=∠EBC,∵延长AB至点E,延长CD至点F,∴∠F=∠E,又∵BE=DF,∴ΔDFM≅ΔBEN;(2)由(1)知ΔDFM≅ΔBEN,∴DM=BN,在▱ABCD中,AD=BC,且AD∥BC∴AD-DM=BC-BN∴AM=CN,且AM∥CN,∴四边形ANCN是平行四边形.【点睛】本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.21、(1)-<m<3;(1)点P的坐标为(3,﹣1)或(﹣3,-5)【解析】

(1)根据题意得出1m+1>0,m-3<0,解答即可;(1)根据题意可知1m+1的绝对值等于3,从而可以得到m的值,进而得到P的坐标.【详解】(1)由题意可得:1m+1>0,m-3<0,解得:﹣<m<3;(1)由题意可得:|1m+1|=3,解得:m=1或m=﹣1.当m=1时,点P的坐标为(3,-1);当m=﹣1时,点P的坐标为(﹣3,-5).综上所述:点P的坐标为(3,﹣1)或(﹣3,-5).【点睛】本题考查了点的坐标,解题的关键是明确题意,求出m的值.22、详见解析.【解析】试题分析:分别解不等式①、②,确定不等式组的解集,表示在数轴上即可.试题解析:解①得:解②得:在数轴上表示为:考点:一元一次不等式组的解法.23、(1)v关于t的函数表达式为v=,自变量的取值范围为t>0;(2)放水速度的范围为300≤x≤360立方米/小时.【解析】

(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=2.5,t=3代入求出相应的v的值,即可求出放水速度的范围.【详解】(1)由题意得:vt=900,即:v=,答:(2)当t=2.5时,v==360,当t=3时,v==300,所以放水速度的范围为300≤v≤360立方米/小时,答:所以放水速度的范围为300≤x≤360立方米/小时.【点睛】考查求反比例函数的关系式以及反比例函数图象上点的坐标特点,解题关键在于根据常用的数量关系得出函数关系式.24、(1);(2)平行四边形的周长是.【解析】

(1)根据∠BEC=180°﹣(∠EBC+∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论