版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省三门峡市陕州区西张村镇初级中学2024年八年级数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是()A.m B.m C.m D.m2.下列曲线中不能表示是的函数的是()A.(A) B.(B) C.(C) D.(D)3.下列函数中,是正比例函数的是()A. B. C. D.4.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则的值为()A. B. C. D.5.下列根式中,与2不是同类二次根式的是()A.18 B.18 C.12 D.6.已知菱形的对角线,的长分别为和,则该菱形面积是().A.; B.; C.; D..7.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4 B.6 C.8 D.108.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是,,,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队 B.乙队 C.丙队 D.哪一个都可以9.我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是()A. B. C. D.10.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.8二、填空题(每小题3分,共24分)11.两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.12.函数中,当满足__________时,它是一次函数.13.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,BP=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③S△APD+S△APB=+;④S正方形ABCD=4+.其中正确结论的序号是_____.14.在直角坐标系中,直线y=x+2与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+2上,点C15.如图,在中,,底边在轴正半轴上,点在第一象限,延长交轴负半轴于点,延长到点,使,若双曲线经过点,则的面积为________.16.如图,在平面直角坐标系中,矩形OABC的边OA=6,OC=2,一条动直线l分别与BC、OA将于点E、F,且将矩形OABC分为面积相等的两部分,则点O到动直线l的距离的最大值为_____.17.一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.18.化简b0_______.三、解答题(共66分)19.(10分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?20.(6分)已知长方形的长,宽.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.21.(6分)因式分解:(1)a(x﹣y)﹣b(y﹣x)2(2)2x3﹣8x2+8x.22.(8分)如图,▱ABCD中,E是AB的中点,连结CE并延长交DA的延长线于点F.求证:AFAD.23.(8分)如图,平面直角坐标系中,点A(−6,0),点B(0,18),∠BAO=60°,射线AC平分∠BAO交y轴正半轴于点C.(1)求点C的坐标;(2)点N从点A以每秒2个单位的速度沿线段AC向终点C运动,过点N作x轴的垂线,分别交线段AB于点M,交线段AO于点P,设线段MP的长度为d,点P的运动时间为t,请求出d与t的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,将△ABO沿y轴翻折,点A落在x轴正半轴上的点E,线段BE交射线AC于点D,点Q为线段OB上的动点,当△AMN与△OQD全等时,求出t值并直接写出此时点Q的坐标.24.(8分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.25.(10分)某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大.请将他们的探究过程补充完整.(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=____________;(2)上述函数表达式中,自变量x的取值范围是____________;(3)列表:x…0.511.522.533.5…y…1.7533.7543.753m…写出m=____________;(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;(5)结合图象可得,x=____________时,矩形的面积最大;写出该函数的其它性质(一条即可):____________.26.(10分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.
参考答案一、选择题(每小题3分,共30分)1、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.00000094=9.4×10-1.故选A.2、B【解析】分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.详解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项B中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故B中曲线不能表示y是x的函数.故选:B.点睛:考查了函数的概念,理解函数的定义,是解决本题的关键.3、C【解析】
根据正比例函数的定义逐一判断即可.【详解】A.不符合y=kx(k为常数且k≠0),故本选项错误;B.是一次函数但不是正比例函数,故本选项错误;C.是正比例函数,故本选项正确;D.自变量x的次数是2,不符合y=kx(k为常数且k≠0),故本选项错误;故选:C.【点睛】本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键.4、A【解析】
直接根据平行线分线段成比例定理求解.【详解】解:∵a∥b∥c,
∴.
故选:A.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.5、C【解析】
各项化简后,利用同类二次根式定义判断即可.【详解】A、原式=32,不符合题意;B、原式=24C、原式=23,符合题意;D、原式=22故选:C.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.6、B【解析】
根据菱形面积的计算方法即可得出答案【详解】解:∵ABCD为菱形,且对角线长分别为和∴菱形面积为故答案选B【点睛】本题考查菱形面积的特殊算法:对角线乘积的一半,熟练掌握菱形面积算法是解题关键7、C【解析】
先根据多边形的外角和是360度求出多边形的内角和的度数,再依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:3×360=1010°.
设多边形的边数是n,则(n-2)•110=1010,
解得:n=1.
即这个多边形的边数是1.
故选:C.【点睛】本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.8、A【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵S甲2=1.44,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲队;故选A.点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、C【解析】
根据A、B、C、D各图形结合勾股定理一一判断可得答案.【详解】解:A、有三个直角三角形,其面积分别为ab,ab和,还可以理解为一个直角梯形,其面积为,由图形可知:=ab+ab+,整理得:(a+b)=2ab+c,a+b+2ab=2ab+c,a+b=c能证明勾股定理;B、中间正方形的面积=c,中间正方形的面积=(a+b)-4ab=a+b,a+b=c,能证明勾股定理;C、不能利用图形面积证明勾股定理,它是对完全平方公式的说明.D、大正方形的面积=c,大正方形的面积=(b-a)+4ab=a+b,,a+b=c,能证明勾股定理;故选C.【点睛】本题主要考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.10、B【解析】
设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【点睛】本题主要考查了用评率估计概率.二、填空题(每小题3分,共24分)11、2【解析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.【详解】∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,∴重合部分面积=.故答案为:2.【点睛】本题主要考查了正方形性质,熟练掌握相关概念是解题关键.12、k≠﹣1【解析】分析:根据一次函数的定义解答即可,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.详解:由题意得,k+1≠0,∴k≠-1.故答案为k≠-1.点睛:本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.13、①③④【解析】
由题意可得△ABE≌△APD,故①正确,可得∠APD=∠AEB=135°,则∠PEB=90°,由勾股定理可得BE,作BM⊥AE于M,可得△BEM是等腰直角三角形,可得BM=EM=,故②错误,根据面积公式即可求S△APD+S△APB,S正方形ABCD,根据计算结果可判断.【详解】解:∵正方形ABCD∴AB=AD,∠BAD=90°又∵∠EAP=90°∴∠BAE=∠PAD,AE=AP,AB=AD∴△AEB≌△APD故①正确作BM⊥AE于M,∵AE=AP=1,∠EAP=90°∴EP=,∠APE=45°=∠AEP∴∠APD=135°∵△AEP≌△APD,∴∠AEB=135°∴∠BEP=90°∴BE∵∠M=90°,∠BEM=45°∴∠BEM=∠EBM=45°∴BE=MB且BE=,∴BM=ME=,故②错误∵S△APD+S△APB=S四边形AMBP﹣S△BEM故③正确∵S正方形ABCD=AB2=AE2+BE2∴S正方形ABCD故④正确∴正确的有①③④【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,关键是构造直角三角形求出点B到直线AE的距离.14、2【解析】
结合正方形的性质结合直线的解析式可得出:A2B1=OC1,A3B2=C1C2,A4B3【详解】解:令一次函数y=x+2中x=0,则y=2,∴点A1的坐标为(0,2),O∵四边形AnBn∴A1B1=OC1令一次函数y=x+2中x=2,则y=4,即A2∴A∴tan∵A∴tan∴A2B1=OC1∴S1=12OC∴Sn=故答案为:22n-1【点睛】本题考查一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,解题关键在于找到规律,此题属规律性题目,比较复杂.15、【解析】
连接BE,先根据题意证明BE⊥BC,进而判定△CBE∽△BOD,根据相似比得出BC×OD=OB×BE的值即为|k|的值,再由三角形面积公式即可求解.【详解】解:如图,连接,∵等腰三角形中,,∴,∵,∴,∴,又∵,∴,即,∴,又∵,∴,∴,即,又∵双曲线的图象过点,∴,∴的面积为.故答案为:.【点睛】此题主要考查了反比例函数比例系数k的几何意义,解题时注意:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,体现了数形结合的思想.16、.【解析】
根据一条动直线l将矩形OABC分为面积相等的两部分,可知G和H分别是OB和OC的中点,得GH=3,根据勾股定理计算OG的长,并且知点O到直线l的距离最大,则l⊥OG,可得结论.【详解】连接OB,交直线l交于点G,∵直线l将矩形OABC分为面积相等的两部分,∴G是OB的中点,过G作GH∥BC,交OC于H,∵BC=OA=6,∴GH=BC=3,OH=OC=1,若要点O到直线l的距离最大,则l⊥OG,Rt△OGH中,由勾股定理得:OG=,故答案为:.【点睛】本题考查一次函数和矩形的综合运用,考查了矩形的性质,直角三角形的性质,勾股定理,确定直线l与OB垂直时,OG最大是本题的关键.17、1【解析】由平均数的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;故答案是:1.18、【解析】
式子的分子和分母都乘以即可得出,根据b是负数去掉绝对值符号即可.【详解】∵b<0,∴=.故答案为:.【点睛】此题考查分母有理化,解题关键在于掌握运算法则三、解答题(共66分)19、(1)40%,144;(2)详见解析;(3)250人【解析】
(1)根据扇形统计图中的数据可以求得最喜欢A项目的人数所占的百分比,并求出其所在扇形统计图中对应的圆心角度数;(2)根据统计图中的数据可以求得选择A的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得全校最喜欢跑步的学生人数约是多少.【详解】解:(1)样本中最喜欢A项目的人数所占的百分比为:1﹣30%﹣10%﹣20%=40%,其所在扇形统计图中对应的圆心角度数是:360°×40%=144°,故答案为40%,144;(2)选择A的人有:45÷30%×40%=60(人),补全的条形统计图如右图所示;(3)2500×10%=250(人),答:全校最喜欢跑步的学生人数约是250人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1);(2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;
(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)∴长方形的周长为.(2)长方形的面积为:正方形的面积也为4.边长为周长为:∴长方形的周长大于正方形的周长.21、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.【解析】
(1)提取公因式x-y,在医院公因式法进行计算即可(1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解【详解】(1)原式=a(x-y)-b(y-x)=(x﹣y)[a﹣b(x﹣y)];(1)原式=1x(x-4x+4)=1x(x﹣1)1.【点睛】此题考查提取公因式法与公式法的综合运用,解题关键在于提取公因式22、详见解析.【解析】
由在▱ABCD中,点E为AB的中点,易证得△AFE≌△BCE(ASA),然后由全等三角形的对应边相等得出AF=BC,即可证得结论.【详解】证明:∵平行四边形ABCD∴AD∥BC,AD=BC(平行四边形对边平行且相等).又∵AD∥BC∴∠BCF=∠F(两直线平行内错角相等).∠BAF=∠ABC∵E为AB中点在△AFE和△BCE中∠BCF=∠F∠BAF=∠ABCAE=EB∴△AFE≌△BCE(ASA)∴AF=BC(全等三角形对应边相等)∴AF=AD(等量代换)【点睛】此题考查全等三角形的判定与性质,平行四边形的性质,解题关键在于证明△AFE≌△BCE.23、(1)(0,6);(2)d=3t(0<t⩽6);S=4t-32(t>8);(3)t=3,此时Q(0,6);t=3,此时Q(0,18)【解析】
(1)首先证明∠BAO=60°,在Rt△ACO中,求出OC的长即可解决问题;(2)理由待定系数法求出直线AB的解析式,再求出点P的坐标即可解决问题;(3)由(1)可知,∠NAM=∠NMA=30°,推出△AMN是等腰三角形,由当△AMN与△OQD全等,∠DOC=30°,①当∠QDO=30°时,△AMN与△OQD全等,此时点Q与C重合,当AN=OC时,△ANM≌△OQC,②当∠OQD=30°,△AMN与△OQD全等,此时点Q与B重合,OD=AN=6,分别求出t的值即可;【详解】(1)在Rt△AOB中,∵OA=6,OB=18,∴tan∠BAO==,∴∠BAO=60°,∵AC平分∠BAO,∴∠CAO=∠BAO=30°,∴OC=OA⋅tan30°=6⋅=6,∴C(0,6).(2)如图1中,设直线AB的解析式为y=kx+b,则有,∴,∴直线AB的解析式为y=x+18,∵AN=2t,∴AM=t,∴OM=6−t,∴M(t−6,0),∴点P的纵坐标为y=(t−6)+18=3t,∴P(t−6,3t),∴d=3t(0<t⩽6).(3)如图2中,由(1)可知,∠NAM=∠NMA=30°,∴△AMN是等腰三角形,∵当△AMN与△OQD全等,∠DOC=30°,∴①当∠QDO=30°时,△AMN与△OQD全等,此时点Q与C重合,当AN=OC时,△ANM≌△OQC,∴2t=6,t=3,此时Q(0,6).②当∠OQD=30°,△AMN与△OQD全等,此时点Q与B重合,OD=AN=6,∴2t=6,∴t=3,此时Q(0,18).【点睛】此题考查几何变换综合题,解题关键在于作辅助线24、(1)(2)【解析】
(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.【详解】(1)∵四边形ABCD是平行四边形,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高二化学选择性必修2(人教版)同步课件 第三章 第二节 第2课时 共价晶体
- 2025版高考物理二轮复习 第12讲 振动与波
- 山东省武城县三校联考2024-2025学年度第一学期第二次月考8年级生物试题
- 集体和他人的利益不能违背道德、违反法律 你怎样看待恶搞人民币
- 医学教材 产科困难气道的问题及处理
- 说好普通话方便你我他班会课件
- 《经济学方法论》课件
- 2025年中考英语一轮教材复习 写作话题4 日常活动
- 2025年中考英语一轮教材复习 七年级(下) Unit 5-3
- 《综合布线各子系统安装与调试 》理论习题三
- 《实践是检验真理的唯一标准》名师教学课件
- 15建设美丽中国【中职专用】高一思想政治《中国特色社会主义》(高教版2023基础模块)
- 低空经济与市场趋势研究报告
- 国家开放大学电大《会计信息系统》期末终考题库及标准参考答案
- 2024-2024学年第一学期小学教育集团化办学工作总结
- 《中国心力衰竭诊断和治疗指南2024》解读
- 2024儿童青少年抑郁治疗与康复痛点调研报告
- 《人工智能基础》课件-6.人类与人工智能如何和平相处
- 3.15 秦汉时期的科技与文化 课件 2024-2025学年七年级历史上学期
- 云南省保山市(2024年-2025年小学三年级语文)人教版期末考试(上学期)试卷(含答案)
- 江苏省镇江市2024年中考数学试卷【附参考答案】
评论
0/150
提交评论