2024届河北省高碑店市八年级下册数学期末预测试题含解析_第1页
2024届河北省高碑店市八年级下册数学期末预测试题含解析_第2页
2024届河北省高碑店市八年级下册数学期末预测试题含解析_第3页
2024届河北省高碑店市八年级下册数学期末预测试题含解析_第4页
2024届河北省高碑店市八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省高碑店市八年级下册数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列分解因式正确的是()A. B.C. D.2.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形3.直线过点,,则的值是()A. B. C. D.4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.5环,方差分别为S甲2=0.54,S乙2=A.甲 B.乙 C.丙 D.丁5.如图,在正方形中,为边上一点,将沿折叠至处,与交于点,若,则的大小为()A. B. C. D.6.如图,点A1、B1、C1分别为△ABC的边BC、CA、AB的中点,点A2、B2、C2分别为△A1B1C1的边B1C1、C1A1、A1B1的中点,若△ABC的面积为1,则△A2B2C2的面积为()A. B. C. D.7.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.108.下列根式中与是同类二次根式的是()A. B. C. D.9.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是().A.甲 B.乙 C.甲和乙一样 D.无法确定10.在平面直角坐标系中,点0,-5在()A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上11.已知中,,则等于()A.6 B.8 C.10 D.1212.下列根式中是最简二次根式的是()A.12 B.15 C.0.3 D.二、填空题(每题4分,共24分)13.如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.14.如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.15.若a=,b=,则=_______.16.如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.17.若ab=1318.如图,在中,分别以点、为圆心,大于的长为半径作弧,两弧交于点、,作直线交于点,连接,若,,则与之间的函数关系式是___________.三、解答题(共78分)19.(8分)5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形.按照此种做法解决下列问题:(1)5个同样大小的矩形纸片摆放成图2形式,请将其分割并拼接成一个平行四边形.要求:在图2中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图3,在面积为1的平行四边形中,点分别是边的中点,分别连结得到一个新的平四边形.则平行四边形的面积为___________(在图3中画图说明).20.(8分)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)尺规作图:求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法)①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)在(1)作出点P后,直接写出点P的坐标.21.(8分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.(1)求证:矩形是正方形;(2)判断与之间的数量关系,并给出证明.22.(10分)乙知关于的方程.(1)试说明无论取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为,试求的值.23.(10分)已知一次函数图象经过和两点(1)求此一次函数的解析式;(2)若点在函数图象上,求的值.24.(10分)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?25.(12分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=,直接写出MN的值.26.求不等式组2(x-1)≥x-4x+7

参考答案一、选择题(每题4分,共48分)1、C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.=(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2、B【解析】

根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.3、B【解析】

分别将点,代入即可计算解答.【详解】解:分别将点,代入,得:,解得,故答案为:B.【点睛】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.4、D【解析】

方差越大,则射击成绩的离散程度越大,稳定性也越小;方差越小,则射击成绩的离散程度越小,稳定性越好,由此即可判断.【详解】解:∵S甲2=0.54,S乙2=0.61,S丙2=0.60,S丁2=0.50,

∴丁的方差最小,成绩最稳定,

故选:D.【点睛】本题考查方差的意义,记住方差越小数据越稳定.5、B【解析】

首先利用正方形性质得出∠B=∠BCD=∠BAD=90°,从而得知∠ACB=∠BAC=45°,然后进一步根据三角形外角性质可以求出∠BEF度数,再结合折叠性质即可得出∠BAE度数,最后进一步求解即可.【详解】∵四边形ABCD为正方形,∴∠B=∠BCD=∠BAD=90°,∴∠ACB=∠BAC=45°,∵∠EFC=69°,∴∠BEF=∠EFC+∠ACB=114°,由折叠性质可得:∠BEA=∠BEF=57°,∴∠BAE=90°−57°=33°,∴∠EAC=45°−33°=12°,故选:B.【点睛】本题主要考查了正方形性质与三角形外角性质的综合运用,熟练掌握相关概念是解题关键.6、D【解析】

由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,面积比为,就可求出△A1B1C1的面积=,同样的方法得出△A2B2C2的面积=.【详解】解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∴S△A1B1C1:S△ABC=1:4,且S△ABC=1,∴S△A1B1C1=.∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A1B1C1∽△A2B2C2且相似比为,∴△A2B2C2的面积=×S△A1B1C1=.故选:D.【点睛】本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用.根据中位线定理得出三角形相似是解决此题的关键.7、B【解析】

根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【详解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故选B.8、C【解析】

各项化简后,利用同类二次根式定义判断即可.【详解】解:、,不符合题意;、,不符合题意;、,与的被开方数相同;与是同类二次根式是符合题意;、,不符合题意,故选:.【点睛】此题考查了同类二次根式,熟练掌握同类二次根式定义是解本题的关键.9、A【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,∴S甲2<S乙2,∴成绩比较稳定的是甲;故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、D【解析】

依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点(1,-5),横坐标为1∴点(1,-5)在y轴负半轴上故选:D.【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为1,y轴上点的横坐标为1.11、B【解析】

直接利用锐角三角三角函数关系得出AC的长.【详解】如图所示:,,,.故选B.【点睛】此题主要考查了锐角三角三角函数关系,正确画出图形是解题关键.12、D【解析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、12=2B、15C、0.3=D、7是最简二次根式,本项正确;故选择:D.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.二、填空题(每题4分,共24分)13、1【解析】在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.解:作CF⊥AD于F点,则CF=BE,∵CD的坡度i=1:2.4=CF:FD,∴设CF=1x,则FD=12x,由题意得CF2+FD2=CD2即:(1x)2+(12x)2=132∴x=1,∴BE=CF=1故答案为1.本题主要考查的是锐角三角函数的定义和勾股定理的应用.14、【解析】

由菱形的性质得出,,,由勾股定理和良宵美景得出OA2+OB2=16①,2OB×OB=15②,①+②得:(OA+OB)2=31,即可得出结果.【详解】解:四边形是菱形,,,,,菱形的面积为15,①,,②,①②得:,,;故答案为:.【点睛】本题考查了菱形的性质、勾股定理、完全平方公式;熟练掌握菱形的性质是解题的关键.15、【解析】

先运用平方差公式把化为(a+b)(a-b),然后将a与b的值代入计算即可求出值.【详解】解:∵=(a+b)(a-b),∴=2×(-2)=.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16、或【解析】

分两种情况:点F线段BC上时或在CB的延长线上时,根据正方形的性质及旋转的性质证明△ABF≌△ADE得到BF=DE,即可求出答案.【详解】∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=AD=BC=CD=DE+CE=2+1=3,由旋转得AF=AE,∴△ABF≌△ADE,∴BF=DE=2,如图:当点F线段BC上时,CF=BC-BF=3-2=1,当点F在CB延长线上时,CF=BC+BF=3+2=5,故答案为:1或5.【点睛】此题考查正方形的性质,全等三角形的判定及性质,旋转的性质,正确理解题意分情况解题是关键.17、-2【解析】试题解析:∵a∴b=3a∴a+ba-b18、【解析】

由题意可判定PQ是AD的垂直平分线,根据线段垂直平分线的性质即得ED=EA,进一步可得∠A=∠ADE,再根据平行线的性质和平行四边形对角相等的性质即得结果.【详解】解:由题意可知,PQ是AD的垂直平分线,∴ED=EA,∴∠A=∠ADE,∵四边形ABCD是平行四边形,∴∠A=∠C=x°,AB∥CD,∴∠A+∠ADC=180°,即,∴.故答案为.【点睛】本题考查了对尺规作线段垂直平分线的理解和线段垂直平分线的性质以及平行四边形的性质,解题的关键是由作图语言正确判断PQ是AD的垂直平分线.三、解答题(共78分)19、(1)见解析;(2);说明见解析,【解析】

(1)参考5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形的方法去解.

(2)采用逆向思维的方式画出"复原"图并结合这个图形即可快捷的求出所求.【详解】(1)如图2所示:拼接成的四边形是平行四边形;(2)正确画出图形(如图3)故平行四边形的面积为:.【点睛】本题第二问较难,主要不知采用逆向思维的方式得到所求的图形进而求出所求图形的面积,把它返回到5个相同的平行四边形的状态,那么其中一个的面积为原图形的,那么平行四边形MNPQ的面积就是.20、(1)见解析;(2)(3,3)【解析】

(1)作线段AB的垂直平分线线和∠xOy的角平分线,两线的交点即为点P.(2)根据(1)中所作的图,点P应同时满足和,直接写出点P的坐标即可.【详解】(1)如图所示,点P即为所求.(2)∵点A(0,8),点B(6,8),点P在线段AB的垂直平分线上∴点P在直线上∵点P在∠xOy的角平分线上∴点P在直线上联立得解得∴点P的坐标(3,3)【点睛】本题考查了平面直角坐标系作图的问题,掌握垂直平分线和角平分线的性质是解题的关键.21、(1)详见解析;(2),理由详见解析.【解析】

作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;根据四边形的性质即全等三角形的性质即可证明,即可得在中,则【详解】证明:(1)过作于点,过作于点,如图所示:正方形,,,且,四边形为正方形四边形是矩形,,.,又,在和中,,,矩形为正方形,(2)矩形为正方形,,四边形是正方形,,,,在和中,,,,在中,,【点睛】本题考查正方形的判定与性质,解题关键在于证明.22、(1)详见解析;(2)2003【解析】

(1)由△=(2k)2-4×1×(k2-1)=4>0可得答案;(2)将x=3代入方程得k2+6k=-8,代入原式计算可得.【详解】解:(1),无论取何值时,方程总有两个不相等的实数根;(2)因为方程有一个根为,,即【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.23、(1)(2)【解析】

(1)用待定系数法,设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.

(2)将点(m,2)代入可得关于m的方程,解出即可.【详解】解:(1)设一次函数的解析式为,则有,解得:,一次函数的解析式为;(2)点在一次函数图象上,.【点睛】本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法求一次函数解析式.24、(1)甲车的速度是千米每分钟,乙车的速度是1千米每分钟;(2)乙车出发20分钟后第一次与甲车相遇;(3)甲车中途因故障停止行驶的时间为25分钟.【解析】

(1)分别根据速度=路程÷时间列式计算即可得解;(2)设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.【详解】解:(千米/分钟),∴甲车的速度是千米每分钟

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论