山东省青岛市第二十一中学2024年八年级数学第二学期期末学业质量监测试题含解析_第1页
山东省青岛市第二十一中学2024年八年级数学第二学期期末学业质量监测试题含解析_第2页
山东省青岛市第二十一中学2024年八年级数学第二学期期末学业质量监测试题含解析_第3页
山东省青岛市第二十一中学2024年八年级数学第二学期期末学业质量监测试题含解析_第4页
山东省青岛市第二十一中学2024年八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市第二十一中学2024年八年级数学第二学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为()A.向左平移了个单位长度 B.向下平移了个单位长度C.横向压缩为原来的一半 D.纵向压缩为原来的一半2.如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为()A.(12,12) B.(78,78) C.(66,66) D.(55,55)3.在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,在下列关系中,不属于直角三角形的是(

)A.b2=a2﹣c2

B.a:b:c=3:4:5C.∠A﹣∠B=∠C

D.∠A:∠B:∠C=3:4:54.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个 B.2个 C.3个 D.4个5.从一个十边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把这个十边形分割成的三角形的个数为()A. B. C. D.6.将直线y=3x-1向上平移1个单位长度,得到的一次函数解析式为()A.y=3x B.y=3x+1 C.y=3x+2 D.y=3x+37.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形8.某课外兴趣小组为了解所在地区老年人的健康情况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.调查了10名老年邻居的健康状况B.在医院调查了1000名老年人的健康状况C.在公园调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况9.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2 B.x≤2 C.x≥4 D.x≤410.把分式,,进行通分,它们的最简公分母是()A.x﹣y B.x+y C.x2﹣y2 D.(x+y)(x﹣y)(x2﹣y2)二、填空题(每小题3分,共24分)11.一组数据5,7,2,5,6的中位数是_____.12.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.13.如图,在四边形中,交于E,若,则的长是_____________14.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.15.在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是_____.16.若多项式x2+mx+是一个多项式的平方,则m的值为_____17.把一个转盘平均分成三等份,依次标上数字1、2、3,自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字记作y,则x与y的和为偶数的概率为______.18.已知一次函数与图象如图所示,则下列结论:①;②;③关于的方程的解为;④当,.其中正确的有_______(填序号).三、解答题(共66分)19.(10分)如图,,分别以为圆心,以长度5为半径作弧,两条弧分别相交于点和,依次连接,连接交于点.(1)判断四边形的形状并说明理由(2)求的长.20.(6分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.21.(6分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.(1)当时,求关于工的函数表达式,(2)求点的坐标.(3)求高铁在时间段行驶的路程.22.(8分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).请回答:的值为______.(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.23.(8分)如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F分别为AB,AD边上的动点,满足,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC;③若BE=3,则BM=MN=DN;④;⑤△ECF面积的最小值为.其中所有正确结论的序号是______24.(8分)在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形.如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图1,∠A=∠B=∠DEC=70°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)四边形AOBC在平面直角坐标系中的位置如图2所示,若点A,B,C的坐标分别为(6,8)、(25,0)、(19,8),则在四边形AOBC的边OB上是否存在强相似点?若存在,请求出其坐标;若不存在,请说明理由;(3)如图3,将矩形ABCD沿CE折叠,使点D落在AB边上的点F处,若点F恰好是四边形ABCE的边AB上的一个强相似点,直接写出的值.25.(10分)先化简:,然后给a选择一个你喜欢的数代入求值.26.(10分)涡阳某童装专卖店在销售中发现,一款童装每件进价为元,销售价为元时,每天可售出件,为了迎接“六-一”儿童节,商店决定采取适当的降价措施,以扩大销售增加利润,经市场调查发现,如果每件童装降价元,那么平均可多售出件.(1)若每件童装降价元,每天可售出

件,每件盈利

元(用含的代数式表示);每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利元.

参考答案一、选择题(每小题3分,共30分)1、C【解析】∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,∴该正方形在纵向上没有变化.又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的,∴此正方形横向缩短为原来的,即正方形横向缩短为原来的一半.故选C.2、B【解析】

根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“An(-,),Bn(,)(n为正整数)”,再根据该规律解决问题.【详解】解:观察,发现规律:A1(-1,1),B1(1,1),A2(-3,3),B2(3,3),A3(-6,6),B3(6,6),B4(10,10),A5(-15,15),…,∴An(-,),Bn(,)(n为正整数).∴B12(,),即(78,78).故选B【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“An(-,),Bn(,)(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.3、D【解析】

根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,三角形内角和为180°进行分析即可.【详解】A选项:∵b2=a2-c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;

B选项:∵32+42=52,∴是直角三角形,故此选项不合题意;

C选项:∵∠A-∠B=∠C,

∴∠A=∠B+∠C,

∵∠A+∠B+∠C=180°,

∴∠A=90°,

∴是直角三角形,故此选项不合题意;

D选项:∠A:∠B:∠C=3:4:5,

∴∠C=180°×=75°,

∴不是直角三角形,故此选项符合题意;故选D.【点睛】主要考查了勾股定理逆定理,以及三角形内角和定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4、C【解析】分析:根据一次函数的定义:形如(k、b为常数,且)的函数,叫做一次函数.详解:①y=2x,是一次函数;②y=2x+11,是一次函数;③,是一次函数;④,不是一次函数,故选C.点睛:本题考查了一次函数的定义.熟练理解并掌握一次函数的概念是对一次函数进行正确辨别的关键.5、B【解析】

根据从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n边形分割成(n-2)个三角形的规律作答.【详解】从十边形的一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个十边形分割成8个三角形。故选B【点睛】此题考查多边形的对角线,解题关键在于掌握其公式6、A【解析】

根据函数解析式“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将直线y=3x-1向上平移1个单位长度,得到的一次函数解析式为y=3x-1+1=3x.故选:A.【点睛】本题考查一次函数的图象与几何变换,熟知函数解析式“上加下减”的原则是解答此题的关键.7、B【解析】

根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.8、D【解析】

抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A、调查不具广泛性,故A不符合题意;

B、调查不具代表性,故B不符合题意;

C、调查不具代表性,故C不符合题意;

D、样本具有广泛性与代表性,故D符合题意;

故选:D.【点睛】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.9、B【解析】

解不等式ax+b≥0的解集,就是求一次函数y=ax+b的函数值大于或等于0时,自变量的取值范围.【详解】不等式ax+b≥0的解集为x≤1.

故选B.【点睛】本题考查的知识点是利用图象求解各问题,解题关键是先画函数图象,根据图象观察,得出结论.10、C【解析】试题分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(1)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解:分式,,的分母分别是(x﹣y)、(x+y)、(x+y)(x﹣y).则最简公分母是(x+y)(x﹣y)=x1﹣y1.故选:C.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.二、填空题(每小题3分,共24分)11、1【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:将数据从小到大排列2,1,1,6,7,

因此中位数为1.

故答案为1【点睛】本题考查了中位数,正确理解中位数的意义是解题的关键.12、1【解析】试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.5÷1%=50(人),50×30%=15(人),50﹣5﹣15﹣20=1(人).故答案为1.考点:条形统计图;扇形统计图.13、【解析】

过点A作AM⊥BD于M,先证明△AEM≌△BEC,得出AM=BC,BE=ME,再根据得出三角形ADM是等腰直角三角形,从而得出AM=BC,结合已知和勾股定理得出DB和BC的长即可【详解】过点A作AM⊥BD于M,则∵∴∵EA=EC,∴∴AM=BC,BE=ME∵则设EB=2k,ED=5k∴EM=2k,DM=3k∵,∴AM=DM=BC=3k,BM=4k则AB=5k=5,k=1∴DB=7,BC=3∵∴DC=故答案为:【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质与判定,以及勾股定理,熟练掌握相关知识是解题的关键14、(3,1)【解析】

关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.15、m>1.【解析】

根据反比例函数的性质得到m-1>0,然后解不等式即可.【详解】解:∵在反比例函数y=的图象每一条曲线上,y都随x的增大而减小,

∴m-1>0,

∴m>1.

故答案为m>1.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.16、±.【解析】

根据完全平方公式的结构特征即可求出答案.【详解】解:∵x2+mx+=x2+mx+()2,∴mx=±2××x,解得m=±.故答案为±.【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.17、【解析】

画出树状图得出所有等可能结果与两数和为偶数的结果数,然后根据概率公式列式计算即可得解.【详解】解:根据题意,画出树状图如下:一共有9种等可能情况,其中x与y的和为偶数的有5种结果,∴x与y的和为偶数的概率为,故答案为:.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18、③④【解析】

根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x>3时,一次函数y1=kx+b在直线y2=x+a的下方,则可对④进行判断.【详解】解:∵一次函数y1=kx+b经过第一、二、四象限,∴k<0,b>0,所以①错误;∵直线y2=x+a的图象与y轴的交点在x轴,下方,∴a<0,所以②错误;∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,∴x=3时,kx+b=x﹣a,所以③正确;当x>3时,y1<y2,所以④正确.故答案为③④.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共66分)19、(1)见解析(2)6【解析】

(1)利用作法得到四边相等,从而可判断四边形ABCD为菱形;(2)根据菱形的性质得OA=OC=4,OB=OD,AC⊥BD,然后利用勾股定理计算出OB,从而得到BD的长【详解】(1)由图可知,垂直平分,且所以,四边形为菱形.(2)因为且平分.在中,的长为6.【点睛】此题考查菱形的判定,垂直平分线的应用,解题关键在于得到四边相等20、(1)证明见解析(2)74【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即运动时间为74考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.21、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.【解析】

(1)根据函数图象中的数据可以求得OA段对应的函数解析式;(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.【详解】(1)当时,设关于的函数表达式是,,得,即当,关于的函数表达式是.(2)设段对应的函数解析式为,得即段对应的函数表达式为.当时,,即点的坐标为.(3)(千米),答:高铁在时段共行驶了千米.【点睛】考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.22、(1);(2);(3).【解析】

(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.【详解】解:(1)∵DE//BC,EF//DC,∴四边形DCFE是平行四边形,∴DE=CF,DC=EF,∴BC+ED=BC+CF=BF,∵DC⊥BE,DC//EF,∴∠BEF=90°,在Rt△BEF中,∵BE=5,EF=DC=3,∴BF==.故BC+DE=.(2)做CE//DB,交AB延长线于点E,由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,在△DAB和△CBA中,∴△DAB△CBA(SAS),∴DB=AC,∵四边形DBEC是平行四边形,DB=CE,∴AC=CE,∵AC⊥DB,∴AC⊥CE,∴△ACE是等腰直角三角形,∵AE=AB+BE=AB+DC=5+3=8,∴AC=,求得AC=.故AC的长为.(3)AC=DF;证明:连接AE、CE,如图,∵四边形ABCD是平行四边形,∴AB//DC,∵四边形ABEF是矩形,∴AB//FE,BF=AE,∴DC//FE,∴四边形DCEF为平行四边形,∴CE=DF,∵四边形ABEF是矩形,∴BF=AE,∵BF=DF,∴DF=CE,∴AF=BE,∵四边形ABCD是平行四边形,∴AD=BC,在△FAD和△EBC中,∴△FAD△EBC(SSS),∴∠AFD=∠BEC,∴∠FEB=∠EFA=90°,∵∠EBF=60°,∠BFD=30°,∴∠DFA=90°-30°-(90°-60°)=30°,∴∠CEB=30°,∴OE=OB,∵∠EBF=60°,∴∠BEA=∠EBF=60°,∴∠AEC=60°+30°=90°,即△AEC是等腰直角三角形,∴AC=CE,∵DF=CE,∴AC=DF.故AC与DF之间的数量关系是AC=DF.【点睛】本题考查几何的综合,难度偏高,涉及的知识点有三角形、四边形、平行线等,熟练掌握以上知识点的综合运用是顺利解题的关键.23、①②③⑤【解析】

由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=;由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,故①正确;∵∠ECF=∠ACD=60°,∴∠ECG=∠FCD,∵∠FEC=∠ADC=60°,∴∠DFC=∠EGC,故②正确;若BE=3,菱形ABCD的边长为6,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=3,BO=AO=,∴BD=,∵△ABC是等边三角形,BE=AE=3,∴CE⊥AB,且∠ABO=30°,∴BE=EM=3,BM=2EM,∴BM=,同理可得DN=,∴MN=BD−BM−DN=,∴BM=MN=DN,故③正确;∵△BEC≌△AFC,∴AF=BE,同理△ACE≌△DCF,∴AE=DF,∵∠BAD≠90°,∴EF2=AE2+AF2不成立,∴EF2=BE2+DF2不成立,故④错误,∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=,△ECF面积的最小值为,故⑤正确;故答案为:①②③⑤.【点睛】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.24、(1)是(2)存在(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论