河南省洛阳洛宁县联考2024年八年级数学第二学期期末联考模拟试题含解析_第1页
河南省洛阳洛宁县联考2024年八年级数学第二学期期末联考模拟试题含解析_第2页
河南省洛阳洛宁县联考2024年八年级数学第二学期期末联考模拟试题含解析_第3页
河南省洛阳洛宁县联考2024年八年级数学第二学期期末联考模拟试题含解析_第4页
河南省洛阳洛宁县联考2024年八年级数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省洛阳洛宁县联考2024年八年级数学第二学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为()A.1.2×10﹣7米 B.1.2×107米 C.1.2×10﹣6米 D.1.2×106米2.如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEFA.23cm B.3cm C.43.如图,将绕点顺时针旋转得到.若点在同一条直线上,则的度数是()A. B. C. D.4.已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是A.1 B.2 C.3 D.45.张浩调查统计了他们家5月份每次打电话的通话时长,并将统计结果进行分组(每组含量最小值,不含最大值),将分组后的结果绘制成如图所示的频数分布直方图,则下列说法中不正确的是()A.张浩家5月份打电话的总频数为80次B.张浩家5月份每次打电话的通话时长在5﹣10分钟的频数为15次C.张浩家5月份每次打电话的通话时长在10﹣15分钟的频数最多D.张浩家5月份每次打电话的通话时长在20﹣25分钟的频率为6%6.如图,过对角线的交点,交于,交于,若的周长为36,,则四边形的周长为()A.24 B.26 C.28 D.207.人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示是()米A.0.77×10–6 B.77×10–6 C.7.7×10–6 D.7.7×10–58.下面各组变量的关系中,成正比例关系的有()A.人的身高与年龄B.买同一练习本所要的钱数与所买本数C.正方形的面积与它的边长D.汽车从甲地到乙地,所用时间与行驶速度9.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15 B.C. D.10.已知一个正多边形的每个外角等于,则这个正多边形是()A.正五边形 B.正六边形 C.正七边形 D.正八边形11.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲908395乙889095丙908890A.甲 B.乙、丙 C.甲、乙 D.甲、丙12.已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于_____.14.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm(结果不取近似值).15.若一元二次方程有两个相等的实数根,则的值是________。16.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.1+ B.4+ C.4 D.-1+17.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).18.某种分子的半径大约是0.0000108mm,用科学记数法表示为______________.三、解答题(共78分)19.(8分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?20.(8分)解方程:(1)(2)(3)21.(8分)“西瓜足解渴,割裂青瑶肤”,西瓜为夏季之水果,果肉味甜,能降温去暑;种子含油,可作消遣食品;果皮药用,有清热、利尿、降血压之效.某西瓜批发商打算购进“黑美人”西瓜与“无籽”西瓜两个品种的西瓜共70000千克.(1)若购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,求“黑美人”西瓜最多购进多少千克?(2)该批发商按(1)中“黑美人”西瓜最多重量购进,预计“黑美人”西瓜售价为4元/千克;“无籽”西瓜售价为5元/千克,两种西瓜全部售完.由于存储条件的影响,“黑美人”西瓜与“无籽”西瓜分别有与的损坏而不能售出.天气逐渐炎热,西瓜热卖,“黑美人”西瓜的销售价格上涨,“无籽”西瓜的销售价格上涨,结果售完之后所得的总销售额比原计划下降了3000元,求的值.22.(10分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣3,﹣3),C(﹣1,﹣3).将△ABC先向右平移3个单位,再向上平移4个单位得到△A1B1C1,在坐标系中画出△A1B1C1,并写出△A1B1C1各顶点的坐标.23.(10分)已知关于x的方程x2﹣kx+k2+n=1有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=1.(1)求证:n<1;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.24.(10分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,(1)写出y甲,y乙与x的函数关系式.(2)学生人数在什么情况下,选择哪个旅行社合算?25.(12分)先化简,再求值:,且x为满足﹣3<x<2的整数.26.已知在等腰三角形中,是的中点,是内任意一点,连接,过点作,交的延长线于点,延长到点,使得,连接.(1)如图1,求证:四边形是平行四边形;(2)如图2,若,求证:且;

参考答案一、选择题(每题4分,共48分)1、A【解析】

科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:0.00000012米=1.2×10﹣7米,故答案为A。【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】

首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,AB=AD∠B∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm∴△AEF是等边三角形,AE=AB2∴周长是33故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.3、B【解析】

用旋转的性质可知△ACE是等腰直角三角形,由此即可解决问题.【详解】解:由题意:A,D,E共线,

由旋转可得:CA=CE,∠ACE=90°,

∴∠EAC=∠E=45°,

故选:B.【点睛】本题考查旋转变换,等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.4、C【解析】

根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.【详解】一次函数经过第一、二、四象限,,,所以①正确;直线的图象与轴交于负半轴,,,所以②错误;一次函数与的图象的交点的横坐标为2,时,,所以③正确;当时,,所以④正确.故选.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.5、D【解析】

根据频数、总数以及频率的定义即可判断;频数指某个数据出现的次数;频率是频数与总数之比【详解】解:A、正确.因为20+15+25+15+5=80故正确.B、正确.由图象可知张浩家5月份每次打电话的通话时长在5﹣10分钟的频数为15次.故正确.C、正确.由图象可知张浩家5月份每次打电话的通话时长在10﹣15分钟的频数最多.故正确.D、错误.张浩家5月份每次打电话的通话时长在20﹣25分钟的频率为=.故错误.故选:D.【点睛】此题主要考查频数分布直方图,熟练掌握频数、总数以及频率之间的关系是解题关键6、A【解析】

根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE=CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.【详解】在平行四边形ABCD中,2(AB+BC)=36,∴AB+BC=18,∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC∴∠AEF=∠CFE,在△AOE和△COF中∴△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴AB+BF+FE+EA=AB+BF+CF+EF=AB+BC+EF=18+6=24故选:A.【点睛】本题考查平行四边形的性质,解题的关键是熟练运用平行四边形的性质,本题属于中等题型.7、C【解析】分析:对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).详解:0.0000077=7.7×10–6.故选C.点睛:本题考查了负整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.8、B【解析】

判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【详解】解:A、人的身高与年龄不成比例,故选项错误;B、单价一定,买同一练习本所要的钱数与所买本数成正比例,故选项正确;C、正方形的面积与它的边长不成比例,故选项错误;D、路程一定,所用时间与行驶速度成反比例,故选项错误;故选:B.【点睛】考查了正比例函数的定义,此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.9、D【解析】解:设走路线A时的平均速度为x千米/小时,根据题意得:﹣=.故选D.10、B【解析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B.点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.11、C【解析】

利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选:C.【点睛】本题考查了加权平均数的计算方法.12、B【解析】

把x=1代入方程x1-1ax+4=0,得到关于a的方程,解方程即可.【详解】∵x=1是方程x1-1ax+4=0的一个根,∴4-4a+4=0,解得a=1.故选B.【点睛】本题考查了一元二次方程的解的概念,解题时注意:使方程两边成立的未知数的值叫方程的解.二、填空题(每题4分,共24分)13、【解析】

连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据平行四边形的性质得到AD∥BC,根据平行线的性质得到∠CBN=∠DAB=60°,根据勾股定理得到AF=,根据三角形和平行四边形的面积公式即可得到结论.【详解】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∴CD=3a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,∵∠FNB=∠CMB=90°,∠BFN=∠BCM=30°,∴BM=BC=a,BN=BF=a,FN=a,CM=a,∴AF=,∵F是BC的中点,∴S△DFA=S平行四边形ABCD,即AF×DP=CD×CM,∴PD=,∴DP:DC=.故答案为:.【点睛】本题考查了平行四边形的性质,平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,正确的作出辅助线是解题的关键.14、【解析】

由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,那么△PBQ的周长最小,此时△PBQ的周长=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先计算出DQ的长度,再得出结果.【详解】连接DQ,交AC于点P,连接PB、BD,BD交AC于O.

∵四边形ABCD是正方形,

∴AC⊥BD,BO=OD,CD=2cm,

∴点B与点D关于AC对称,

∴BP=DP,

∴BP+PQ=DP+PQ=DQ.

在Rt△CDQ中,DQ=cm,

∴△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm).

故答案为(+1).【点睛】本题考查了正方形的性质;轴对称-最短路线问题,解题的关键是根据两点之间线段最短,确定点P的位置.15、【解析】

根据根的判别式和已知得出(﹣3)2﹣4c=0,求出方程的解即可.【详解】∵一元二次方程x2﹣3x+c=0有两个相等的实数根,∴△=(﹣3)2﹣4c=0,解得:c=,故答案为.【点睛】本题考查根的判别式和解一元一次方程,能熟记根的判别式的内容是解此题的关键.16、A【解析】

根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.【详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合题意,舍去),∴t的值为.故选A.【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.17、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.18、1.08×10-5【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000108=1.08×10-5.故答案为1.08×10-5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共78分)19、(1)40;100;15;(2)225万人;(3).【解析】试题分析:(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.试题解析:解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C组话题的概率是=.故答案为40,100,15,.考点:频数(率)分布表;用样本估计总体;扇形统计图;概率公式.20、(1),.(2),.(3)原方程无解【解析】

(1)方程利用公式法求出解即可;

(2)方程利用因式分解法求出解即可;

(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)解:,,,,,.(2)解:原方程可变形为,即.或=0.所以,.(3)解:方程两边同时乘,得.解这个方程,得.检验:当时,,是增根,原方程无解.【点睛】此题考查了解一元二次方程-因式分解法及公式法,熟练掌握各种解法是解本题的关键.21、(1)最多(2)【解析】

(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克,根据购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,即可得出关于的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量,即可得出关于的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克,依题意,得:,解得:.答:“黑美人”西瓜最多购进40000千克.(2)由题意得:,整理,得:,解得:(舍去).答:的值为1.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.22、A1(1,3);B1(0,1);C1(2,1)【解析】

把三角形ABC的各顶点先向右平移3个单位,再向上平移4个单位得到平移后的个点,顺次链接平移后的各顶点即为平移后的三角形,根据个点所在象限的符号和距坐标轴的距离即可得各点的坐标.【详解】解:△A1B1C1如图所示;A1(1,3);B1(0,1);C1(2,1).【点睛】本题考查了作图-平移变化,掌握作图-平移变化是解答本题的关键.23、(3)证明见解析;(3)x3=3﹣k或x3=5﹣k.(3)k=3.【解析】

(3)方程有两个不相等的实数根,则△>3,建立关于n,k的不等式,由此即可证得结论;(3)根据根与系数的关系,把x3+x3=k代入已知条件(3x3+x3)3﹣8(3x3+x3)+35=3,即可用k的代数式表示x3;(3)首先由(3)知n<﹣k3,又n=﹣3,求出k的范围.再把(3)中求得的关系式代入原方程,即可求出k的值.【详解】证明:(3)∵关于x的方程x3﹣kx+k3+n=3有两个不相等的实数根,∴△=k3﹣4(k3+n)=﹣3k3﹣4n>3,∴n<﹣k3.又﹣k3≤3,∴n<3.解:(3)∵(3x3+x3)3﹣8(3x3+x3)+35=3,x3+x3=k,∴(x3+x3+x3)3﹣8(x3+x3+x3)+35=3∴(x3+k)3﹣8(x3+k)+35=3∴[(x3+k)﹣3][(x3+k)﹣5]=3∴x3+k=3或x3+k=5,∴x3=3﹣k或x3=5﹣k.(3)∵n<﹣k3,n=﹣3,∴k3<4,即:﹣3<k<3.原方程化为:x3﹣kx+k3﹣3=3,把x3=3﹣k代入,得到k3﹣3k+3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论