2024年四川省江油市七校数学八年级下册期末经典模拟试题含解析_第1页
2024年四川省江油市七校数学八年级下册期末经典模拟试题含解析_第2页
2024年四川省江油市七校数学八年级下册期末经典模拟试题含解析_第3页
2024年四川省江油市七校数学八年级下册期末经典模拟试题含解析_第4页
2024年四川省江油市七校数学八年级下册期末经典模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年四川省江油市七校数学八年级下册期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列多项式中,可以提取公因式的是()A.ab+cd B.mn+m2C.x2-y2 D.x2+2xy+y22.如图,在平行四边形中,是边上的中点,是边上的一动点,将沿所在直线翻折得到,连接,则的最小值为()A. B. C. D.3.如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是()A.5 B.4 C.3 D.24.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为()A.70° B.75° C.60° D.65°5.小明家、食堂,图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y(km)与时间x(min)之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25minB.食堂到图书馆的距离为0.6kmC.小明读报用了30minD.小明从图书馆回家的速度为0.8km/min6.如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是()A.AE=BF B.AE⊥BFC.AO=OE D.S△AOB=S四边形DEOF7.据益阳气象部门记载,2018年6月30日益阳市最高气温是33℃,最低气温是24℃,则当天益阳市气温(℃)的变化范围是()A. B. C. D.8.菱形的对角线长分别是,则这个菱形的面积是()A. B. C. D.9.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形10.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3 B.2 C.2 D.二、填空题(每小题3分,共24分)11.有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是______.石块的面12345频数172815162412.若一元二次方程有两个相等的实数根,则的值是________。13.把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________14.在平面直角坐标系中,直线与轴交于点,与反比例函数在第一象限内的图像相交于点,将直线平移后与反比例函数图像在第一象限内交于点,且的面积为18,则平移后的直线解析式为__________.15.如图,小丽在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网3米的位置上,已知她的击球高度是2.4米,则她应站在离网________米处.16.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.17.已知,则的值是_______.18.如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图,为衣架的墙角固定端,为固定支点,为滑动支点,四边形和四边形是菱形,且,点在上滑动时,衣架外延钢体发生角度形变,其外延长度(点和点间的距离)也随之变化,形成衣架伸缩效果,伸缩衣架为初始状态时,衣架外延长度为,当点向点移动时,外延长度为.(1)则菱形的边长为______.(2)如图3,当时,为对角线(不含点)上任意一点,则的最小值为______.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.20.(6分)在矩形中,,,将沿着对角线对折得到.(1)如图,交于点,于点,求的长.(2)如图,再将沿着对角线对折得到,顺次连接、、、,求:四边形的面积.21.(6分)已知:如图,一次函数与的图象相交于点.(1)求点的坐标;(2)结合图象,直接写出时的取值范围.22.(8分)如图,直线y=x+m与x轴交于点A(-3,0),直线y=-x+2与x轴、y轴分别交于B、C两点,并与直线y=x+m相交于点D,(1)点D的坐标为;(2)求四边形AOCD的面积;(3)若点P为x轴上一动点,当PD+PC的值最小时,求点P的坐标.23.(8分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)直接写出点M的坐标为;(2)求直线MN的函数解析式;(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.24.(8分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.25.(10分)为鼓励学生积极参加体育锻炼,某学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生所穿运动鞋的号码,绘制了如下的统计图①和图②(不完整).请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值为;(2)请补全条形统计图,并求本次调查样本数据的众数和中位数;(3)根据样本数据,若学校计划购买400双运动鞋,建议购买35号运动鞋多少双?26.(10分)计算:(1)﹣;(2)

参考答案一、选择题(每小题3分,共30分)1、B【解析】

直接利用提取公因式法分解因式的步骤分析得出答案.【详解】解:A.ab+cd,没有公因式,故此选项错误;B.mn+m2=m(n+m),故此选项正确;C.x2﹣y2,没有公因式,故此选项错误;D.x2+2xy+y2,没有公因式,故此选项错误.故选B.【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.2、C【解析】

如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线,与线段CE重合时,线段长度最短,可以求出最小值.【详解】如图,连接EC,过点E作EMCD交CD的延长线于点M.四边形ABCD是平行四边形,E为AD的中点,又,根据勾股定理得:根据翻折的性质,可得,当折线,与线段CE重合时,线段长度最短,此时=.【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.3、A【解析】

先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.【详解】∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,∴A(1,1),B(2,),又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,∴C(1,),D(2,),∴AC=k-1,BD=-,∴S△AOC+S△ABD==3,∴k=5,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.4、B【解析】

由旋转的性质知∠AOD=30°,OA=OD,根据等腰三角形的性质及内角和定理可得答案.【详解】由题意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.故选B.【点睛】本题考查了旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.5、C【解析】

根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,本题得以解决.【详解】由图象可得,小明吃早餐用了25﹣8=17min,故选项A错误;食堂到图书馆的距离为:0.8﹣0.6=0.2km,故选项B错误;小明读报用了58﹣28=30min,故选项C正确;小明从图书馆回家的速度为:0.8÷(68﹣58)=0.08km/min,故选项D错误;故选C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6、C【解析】试题解析:A、∵在正方形ABCD中,

∴≌

故此选项正确;

B、∵≌

故此选项正确;

C、连接

假设AO=OE,

∴≌

∴AB不可能等于BE,

∴假设不成立,即

故此选项错误;

D、∵≌

∴S△AOB=S四边形DEOF,故此选项正确.

故选C.7、D【解析】

根据题意和不等式的定义,列不等式即可.【详解】解:根据题意可知:当天益阳市气温(℃)的变化范围是故选D.【点睛】此题考查的是不等式的定义,掌握不等式的定义是解决此题的关键.8、B【解析】

根据菱形的面积公式:菱形面积=ab(a、b是两条对角线的长度)可得到答案.【详解】菱形的面积:故选:B.【点睛】此题主要考查了菱形的面积公式,关键是熟练掌握面积公式.9、D【解析】

本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A.有一个角是直角的四边形是矩形,错误;B.两条对角线互相垂直的四边形是菱形,错误;C.两条对角线互相垂直平分的四边形是正方形,错误;D.两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.10、D【解析】

作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=,故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据表中的信息,先求出石块标记3的面落在地面上的频率,再用频率估计概率即可.【详解】解:石块标记3的面落在地面上的频率是=,

于是可以估计石块标记3的面落在地面上的概率是.故答案为:.【点睛】本题考查用频率来估计概率,在大量重复试验下频率的稳定值即是概率,属于基础题.12、【解析】

根据根的判别式和已知得出(﹣3)2﹣4c=0,求出方程的解即可.【详解】∵一元二次方程x2﹣3x+c=0有两个相等的实数根,∴△=(﹣3)2﹣4c=0,解得:c=,故答案为.【点睛】本题考查根的判别式和解一元一次方程,能熟记根的判别式的内容是解此题的关键.13、y=-2x+1【解析】试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.故答案是y=﹣2x+1.考点:一次函数图象与几何变换.14、y=x+1或y=x﹣2【解析】

设反比例解析式为y=,将B坐标代入直线y=x﹣2中求出m的值,确定出B坐标,将B坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;当直线向上平移时,过C作CD垂直于y轴,过B作BE垂直于y轴,设y=x﹣2平移后解析式为y=x+b,C坐标为(a,a+b),△ABC面积=梯形BEDC面积+△ABE面积﹣△ACD面积,由已知△ABC面积列出关系式,将C坐标代入反比例解析式中列出关系式,两关系式联立求出b的值,即可确定出平移后直线的解析式;当直线向下平移时,假设平移后与反比例函数图像在第一象限内交于点C',若平移的距离和向上平移的距离相同,利用△ABC与△ABC'的同底等高,便能得到且它们的面积也相同,皆为18,符合题意,进而得到结果.【详解】解:将B坐标代入直线y=x﹣2中得:m﹣2=2,解得:m=4,则B(4,2),即BE=4,OE=2,设反比例解析式为y=(k≠0),将B(4,2)代入反比例解析式得:k=8,则反比例解析式为y=;设平移后直线解析式为y=x+b,C(a,a+b),对于直线y=x﹣2,令x=0求出y=﹣2,得到OA=2,过C作CD⊥y轴,过B作BE⊥y轴,将C坐标代入反比例解析式得:a(a+b)=8,∵S△ABC=S梯形BCDE+S△ABE﹣S△ACD=18,∴×(a+4)×(a+b﹣2)+×(2+2)×4﹣×a×(a+b+2)=18,解得:b=1,则平移后直线解析式为y=x+1.此时直线y=x+1是由y=x﹣2向上平移9个单位得到的,同理,当直线向下平移9个单位时,直线解析式为y=x﹣2﹣9,即:y=x﹣2设此时直线与反比例函数图像在第一象限内交于点C',则此时△ABC与△ABC'是同底等高的两个三角形,所以△ABC'也是18,符合题意,故答案是:y=x+1或y=x﹣2.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,三角形、梯形的面积求法,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.15、6【解析】

由题意可得,△ABE∽△ACD,故,由此可求得AC的长,那么BC的长就可得出.【详解】解:如图所示:已知网高,击球高度,,由题意可得,∴∴,∴,∴她应站在离网6米处.故答案为:6.【点睛】本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.16、22.5°【解析】

四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.17、【解析】

先对原式进行化简,然后代入a,b的值计算即可.【详解】,.,,∴原式=,故答案为:.【点睛】本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.18、25;【解析】

(1)过F作于,根据等腰三角形的性质可得.(2)作等边,等边,得到,得出,而当、、、共线时,最小,再根据,继而求出结果.【详解】(1)如图,过F作于,设,由题意衣架外延长度为得,当时,外延长度为.则.则有,∴,∴.∵∴菱形的边长为25cm故答案为:25cm(2)作等边,等边,∴EM=EP,EH=EQ∴,∴,,∴,当、、、共线时,最小,易知,∵,∴的最小值为.【点睛】本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(共66分)19、(1)证明见解析;(2)【解析】

(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC=60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.【详解】(1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.考点:三角形的中位线定理,勾股定理.20、(1);(2)的面积是.【解析】

(1)由矩形的性质可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折叠的性质和平行线的性质可得AE=CE,由勾股定理可求AE的长,由三角形面积公式可求EF的长;(2)由折叠的性质可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可证△BAM≌△DCN,△AMD≌△CNB可得MD=BN,BM=DN,可得四边形MDNB是平行四边形,通过证明四边形MDNB是矩形,可得∠BND=90°,由三角形面积公式可求DF的长,由勾股定理可求BN的长,即可求四边形BMDN的面积.【详解】解:(1)∵四边形ABCD是矩形∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC∴AC==5,∵将Rt△ABC沿着对角线AC对折得到△AMC.∴∠BCA=∠ACE,∵AD∥BC∴∠DAC=∠BCA∴∠EAC=∠ECA∴AE=EC∵EC2=ED2+CD2,∴AE2=(4−AE)2+9,∴AE=,∵S△AEC=×AE×DC=×AC×EF,∴×3=5×EF,∴EF=;(2)如图所示:∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,∵AB∥CD∴∠BAC=∠ACD∴∠BAC=∠ACD=∠CAM=∠ACN∴∠BAM=∠DCN,且BA=AM=CD=CN∴△BAM≌△DCN(SAS)∴BM=DN∵∠BAM=∠DCN∴∠BAM−90°=∠DCN−90°∴∠MAD=∠BCN,且AD=BC,AM=CN∴△AMD≌△CNB(SAS)∴MD=BN,且BM=DN∴四边形MDNB是平行四边形连接BD,由(1)可知:∠EAC=∠ECA,∵∠AMC=∠ADC=90°∴点A,点C,点D,点M四点共圆,∴∠ADM=∠ACM,∴∠ADM=∠CAD∴AC∥MD,且AC⊥DN∴MD⊥DN,∴四边形BNDM是矩形∴∠BND=90°∵S△ADC=×AD×CD=×AC×DF∴DF=∴DN=∵四边形ABCD是矩形∴AC=BD=5,∴BN=∴四边形BMDN的面积=BN×DN=×=.【点睛】本题是四边形综合题,考查了矩形的判定和性质,折叠的性质,勾股定理,全等三角形的判定和性质,证明四边形BNDM是矩形是本题的关键.21、(1)点A的坐标为;(2)【解析】

(1)将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;(2)根据函数图象以及点A坐标即可求解.【详解】解:(1)依题意得:,解得:,∴点A的坐标为;(2)由图象得,当时,的取值范围为:.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.22、(1)(-1,3);(2);(3)(-,0).【解析】

(1)把A、B的坐标代入函数解析式,求出函数解析式,即可求出D点的坐标;(2)根据面积公式求出面积即可;(3)找出P点的位置,求出直线EC的解析式,即可求出PD点的坐标.【详解】解:(1)把A(-3,0)代入y=x+m,得m=,∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),解方程组得:,∴D点坐标为(-1,3);故答案为(-1,3);(2)∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),∴四边形AOCD的面积=S△DAB-S△COB=×5×3-×2×2=;(3)作D关于x轴的对称点E,连接CE,交x轴于P,此时PD+PC的值最小,∵D点坐标为(-1,3),∴E点的坐标为(-1,-3),设直线CE的解析式为y=ax+b,把E、C的坐标代入得:解得:a=5,b=2,即直线CE的解析式为y=5x+2,当y=0时,x=-,即P点的坐标为(-,0).【点睛】本题考查了函数图象上点的坐标特征,轴对称-最短路线问题等知识点,能综合运用知识点进行计算是解此题的关键.23、(1)(﹣2,0);(2)y=2x+1;(2)y=2x+2【解析】

(1)由点N(0,1),得出ON=1,再由ON=2OM,求得OM=2,从而得出点M的坐标;(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;(2)根据题意求得A的纵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论