2024届芜湖市重点中学八年级下册数学期末监测试题含解析_第1页
2024届芜湖市重点中学八年级下册数学期末监测试题含解析_第2页
2024届芜湖市重点中学八年级下册数学期末监测试题含解析_第3页
2024届芜湖市重点中学八年级下册数学期末监测试题含解析_第4页
2024届芜湖市重点中学八年级下册数学期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届芜湖市重点中学八年级下册数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是()A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF2.已知平行四边形中,,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A. B. C. D.3.已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6cm2,周长是△ABC的一半.AB=8cm,则AB边上高等于()A.3cmB.6cmC.9cmD.12cm4.如图,矩形的面积为,反比例函数的图象过点,则的值为()A. B. C. D.5.下列选择中,是直角三角形的三边长的是()A.1,2,3 B.,, C.3,4,6 D.4,5,66.已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是()A.m>-1,n>2 B.m<-1,n>2 C.m>-1,n<2 D.m<-1,n<27.如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为()A.5 B.6 C.8 D.128.如图,在中,,点在上,,若,,则的长是()A. B. C. D.9.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时点P的坐标是()A.(2016,0) B.(2017,1) C.(2017,-1) D.(2018,0)10.下列计算正确的是()。A. B. C. D.二、填空题(每小题3分,共24分)11.如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=_____cm.12.计算:(2﹣1)(1+2)=_____.13.今年全国高考报考人数是10310000,将10310000科学记数法表示为_____.14.如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.15.不等式组的最小整数解是___________.16.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则关于x的方程k1x+a=k2x+b的解是_____.17.如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=________.18.已知,,,若,则可以取的值为______.三、解答题(共66分)19.(10分)随着生活水平的提高,人们对饮水质量的需求越来越高,我市某公司根据市场需求准备销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用48000元购进A型净水器与用36000元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共400台进行销售,其中A型的台数不超过B型的台数,A型净水器每台售价1500元,B型净水器每台售价1100元,怎样安排进货才能使售完这400台净水器所获利润最大?最大利润是多少元?20.(6分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.21.(6分)已知x=,y=,求下列各式的值:(1)x2-xy+y2;(2).22.(8分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.23.(8分)如图,,平分交于点,于点,交于点,连接,求证:四边形是菱形.24.(8分)如图,平面直角坐标系中,,,点是轴上点,点为的中点.(1)求证:;(2)若点在轴正半轴上,且与的距离等于,求点的坐标;(3)如图2,若点在轴正半轴上,且于点,当四边形为平行四边形时,求直线的解析式.25.(10分)如图,将边长为4的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△ABC.(1)当两个三角形重叠部分的面积为3时,求移动的距离AA;(2)当移动的距离AA是何值时,重叠部分是菱形.26.(10分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.【详解】解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.故选:A.【点睛】本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.2、C【解析】

由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.【点睛】本题考查正方形的判定.正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③先判定四边形是平行四边形,再用1或2进行判定.3、B【解析】解:由题意得,∵△ABC∽△A′B′C′,△A′B′C′的周长是△ABC的一半∴位似比为2∴S△ABC=4S△A′B′C=24cm2,∴AB边上的高等于6cm.故选B.4、B【解析】

由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.【详解】由题意得:,又双曲线位于第二象限,则,

所以B选项是正确的.【点睛】本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.5、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、12+22≠32,故不能组成直角三角形;

B、()2+()2=()2,故能组成直角三角形;

C、32+42≠62,故不能组成直角三角形;

D、42+52≠62,故不能组成直角三角形.

故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、C【解析】

根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.【详解】解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限∴m+1>0,n-2<0∴m>-1,n<2,故选:C.【点睛】本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.7、B【解析】

由平行四边形的性质得出BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.【详解】解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,∴BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,∵∴△OBC是直角三角形,∴.故选:B.【点睛】本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.8、C【解析】

根据勾股定理求出斜边长,根据直角三角形的性质解答.【详解】在Rt△ABC中,∠ACB=90°,∴AB==5,∵∠ACB=90°,AD=BD,∴CD=AB=,故选C.【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.9、B【解析】试题解析:以时间为点P的下标.

观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,

∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).

∵2017=504×4+1,

∴第2017秒时,点P的坐标为(2017,1).故选B.10、C【解析】

根据二次根式的运算法则即可求出答案.【详解】解:(A)原式=,故A错误;(B)原式=3,故B错误;(C)原式=,故C正确;(D)原式=2,故D错误;故选:C【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.二、填空题(每小题3分,共24分)11、3【解析】

根据角平分线上的点到角的两边的距离相等求解即可.【详解】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PE=PD=3cm.故答案为;3【点睛】本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.12、7【解析】

根据二次根式的运算法则即可求出答案.【详解】原式=(2)2-1=8-1=7,故答案为:7.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.13、【解析】

根据科学计数法的表示方法即可求解.【详解】解:将10310000科学记数法表示为.故答案为:.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.14、68°【解析】

只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠ADC=66°,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠EAD=90°,∵F为DE的中点,∴FA=FD=EF,∵∠EDC=44°,∴∠ADF=∠FAD=22°,∴∠EAF=90°﹣22°=68°,故答案为:68°.【点睛】本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、-1【解析】

分别解两个不等式,得到不等式组的解集,再从解集中找到最小整数解.【详解】解不等式得,解不等式得∴不等式组的解集为∴不等式组的最小整数解为-1故答案为:-1.【点睛】本题考查求不等式组的最小整数解,熟练掌握解不等式,并由“大小小大取中间”确定不等式组的解集是解题的关键.16、x=1【解析】

由交点坐标就是该方程的解可得答案.【详解】关于x的方程k2x+b=k1x+a的解,即直线y1=k1x+a与直线y2=k2x+b的交点横坐标,所以方程的解为x=1.故答案为:1.【点睛】本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质.17、1.【解析】

根据已知易得AB-BC=2,AB+BC=3,解方程组即可.【详解】解:∵△AOB的周长比△BOC的周长多2,∴AB-BC=2.又平行四边形ABCD周长为20,∴AB+BC=3.∴AB=1.故答案为1.【点睛】本题考查平行四边形的性质,解决平行四边形的周长问题一般转化为两邻边和处理.18、【解析】

通过画一次函数的图象,从图象观察进行解答,根据当时函数的图象在的图象的上方进行解答即可.【详解】如下图由函数的图象可知,当时函数的图象在的图象的上方,即.

故答案为:.【点睛】本题考查的是一次函数的图象,利用数形结合进行解答是解答此题的关键.三、解答题(共66分)19、(1)每台A型净水器的进价为2元,每台B型净水器的进价为1元;(2)购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.【解析】

(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,根据数量=总价÷单价结合用48000元购进A型净水器与用36000元购进B型净水器的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设最大利润是W元,由总利润=单台利润×进货数量,即可得出W关于x的函数关系式,由A型的台数不超过B型的台数,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1.经检验,x=1是原方程的解,且符合题意,∴x+300=2.答:每台A型净水器的进价为2元,每台B型净水器的进价为1元.(2)设最大利润是W元.∵购进x台A型净水器,∴购进(400﹣x)台B型净水器,依题意,得:W=(1500﹣2)x+(1100﹣1)(400﹣x)=100x+3.∵A型的台数不超过B型的台数,∴x≤400﹣x,解得:x≤4.∵100>0,∴W随x值的增大而增大,∴当x=4时,W取得最大值,最大值为100000元.答:购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量之间的关系,找出W关于x的函数关系式.20、(1)见解析(2)见解析【解析】

(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;

(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,

∴AF=FG=GC.

又∵点D是边AB的中点,

∴DH∥BG.

同理:EH∥BF.

∴四边形FBGH是平行四边形,

连结BH,交AC于点O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四边形FBGH是菱形;

(2)∵四边形FBGH是平行四边形,

∴BO=HO,FO=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四边形ABCH是平行四边形.

∵AC⊥BH,AB=BC,

∴四边形ABCH是正方形.【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.21、(1);(2)12.【解析】试题分析:由x=,y=,得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.试题解析:(1)∵x=,y=,∴x+y=,xy=,∴x2-xy+y2=(x+y)2-3xy=7-=;(2)===12.22、(1)见解析;(2)①菱形,见解析;②.【解析】

(1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.【详解】(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假设DF=BF=x,∴AF=AD−DF=8−x.∴在直角△ABF中,AB+AF=BF,即6+(8−x)=x,解得x=,即BF=,∴FO=,∴FG=2FO=【点睛】此题考查四边形综合题,解题关键在于利用勾股定理进行计算.23、见解析【解析】

根据题意首先利用ASA证明,再得出四边形是平行四边形,再利用四边相等来证明四边形是菱形即可.【详解】证明:∵,∴,∵平分交于点,∴,∴,∴,∵,∴,在和中,,,∴,∴,∴四边形是平行四边形,∵,∴四边形是菱形【点睛】此题考查全等三角形的判定与性质,平行四边形的判定,菱形的判定,解题关键在于利用平行线的性质来求证.24、(1)见解析;(2);(3)【解析】

(1)由A与B的坐标确定OA和OB的长,进而确定B为OA的中点,而D为OC的中点,利用中位线定理即可证明;(2)作BF⊥AC于点F,取AB的中点G,确定出G坐标;由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理求出OA的长,即可确定C的坐标;(3)当四边形ABDE为平行四边形,可得AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE;再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标;设直线AC解析式为y=kx+b,利用待定系数法即可确定的解析式.【详解】解:(1),,,,是的中点,又是的中点,是的中位线,.(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3);∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:∵OA=4∴..(3)如图2,当四边形ABDE为平行四边形,∴AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠0CA=45°,∴OC=0A=4,∴点C的坐标为(4,0)或(-4,0),设直线AC的解析式为y=kx+b(k≠0).由题意得:解得:直线的解析式为.【点睛】此题属于一次函数和几何知识的综合,熟练掌握一次函数的性质和相关几何定理是解答本题的关键.25、(1)AA=1或3;(2)AA=8-42【解析】

(1)根据平移的性质,结合阴影部分是平行四边形,设AA′=x,AC与A′B′相交于点E,则A′D=4-x,△AA′E是等腰直角三角形,根据平行四边形的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论