2024届安徽省巢湖市名校八年级数学第二学期期末质量检测模拟试题含解析_第1页
2024届安徽省巢湖市名校八年级数学第二学期期末质量检测模拟试题含解析_第2页
2024届安徽省巢湖市名校八年级数学第二学期期末质量检测模拟试题含解析_第3页
2024届安徽省巢湖市名校八年级数学第二学期期末质量检测模拟试题含解析_第4页
2024届安徽省巢湖市名校八年级数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省巢湖市名校八年级数学第二学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一元二次方程的根是()A. B. C., D.无实数根2.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.33.武侯区某学校计划选购甲,乙两种图书为“初中数学分享学习课堂之生讲生学”初赛的奖品.已知甲图书的单价是乙图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书少10本,设乙种图书的价为x元,依据题意列方程正确的是()A. B. C. D.4.对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是25.如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是()A.x<﹣1或0<x<2 B.x<﹣1或x>2C.﹣1<x<0或0<x<2 D.﹣1<x<0或x>26.赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是()A. B.C. D.7.公式表示当重力为P时的物体作用在弹簧上时弹簧的长度.表示弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P8.一个装有进水管和出水管的空容器,从某时刻开始内只进水不出水,容器内存水,在随后的内既进水又出水,容器内存水,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量(单位:)与时间(单位:)之间的函数关系的图象大致的是()A. B.C. D.9.在下列各式中①;②;③;④,是一元二次方程的共有()A.0个 B.1个 C.2个 D.3个10.如图,在中,,是的中点,,,若,,①四边形是平行四边形;②是等腰三角形;③四边形的周长是;④四边形的面积是1.则以上结论正确的是A.①②③ B.①②④ C.①③④ D.②④二、填空题(每小题3分,共24分)11.若,则3a______3b;______用“”,“”,或“”填空12.计算:.13.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=4,则AD=_____.14.已知:线段求作:菱形,使得且.以下是小丁同学的作法:①作线段;②分别以点,为圆心,线段的长为半径作弧,两弧交于点;③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;④连接,,.则四边形即为所求作的菱形.(如图)老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.15.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正确的是_____(填序号)16.在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。17.如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是.18.在菱形ABCD中,M是AD的中点,AB=4,N是对角线AC上一动点,△DMN的周长最小是2+,则BD的长为___________.三、解答题(共66分)19.(10分)已知y-2和x成正比例,且当x=1时,当y=4。(1)求y与x之间的函数关系式;(2)若点P(3,m)在这个函数图象上,求m的值。20.(6分)如图,一次函数y1=2x+2的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,4),求点A的坐标及反比例函数的表达式.21.(6分)解方程:-=-1.22.(8分)如图,一次函数的图象与反比例函数的图象交于点和点.(1)求,的值;(2)根据图象判断,当不等式成立时,的取值范围是什么?23.(8分)“金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.24.(8分)如图,在△ABC中,点D在边AB上,点F、E在边AC上,DE∥BC,DF∥BE,求证:.25.(10分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)四边形AFCD是什么特殊的四边形?请说明理由.(2)填空:①若AB=AC,则四边形AFCD是_______形.②当△ABC满足条件______时,四边形AFCD是正方形.26.(10分)如图,已知一次函数y=x−3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为___,k的值为___;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y⩾−2时,请直接写出自变量x的取值范围。

参考答案一、选择题(每小题3分,共30分)1、C【解析】

利用因式分解法即可将原方程变为x(x-1)=0,即可得x=0或x-1=0,则求得原方程的根.【详解】解:∵x1=1x,∴x1-1x=0,∴x(x-1)=0,∴x=0或x-1=0,∴一元二次方程x1=1x的根x1=0,x1=1.故选C.【点睛】此题考查了因式分解法解一元二次方程.熟练掌握一元二次方程的解法是解题关键.2、D【解析】

本题考查二次根式的化简,.【详解】.故选D.【点睛】本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.3、A【解析】

根据“600元单独购买甲种图书比单独购买乙种图书少10本”列出相应的分式方程,本题得以解决.【详解】由题意可得,,故选:A.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.4、B【解析】

根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.【点睛】此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题5、D【解析】析:根据反比例函数的自变量取值范围,y1与y1图象的交点横坐标,可确定y1>y1时,x的取值范围.解答:解:∵函数y1=x-1和函数y1=的图象相交于点M(1,m),N(-1,n),∴当y1>y1时,那么直线在双曲线的上方,∴此时x的取值范围为-1<x<0或x>1.故选D.点评:本题考查了反比例函数与一次函数的交点问题的运用.关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围.6、C【解析】

设读前一半时,平均每天读x页,等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可.【详解】解:设读前一半时,平均每天读x页,则读前一半用的时间为:,读后一半用的时间为:.由题意得,+=14,故选:C.【点睛】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.7、A【解析】试题分析:A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬;故选A考点:一次函数的应用8、A【解析】

根据只进水不出水、既进水又出水、只出水不进水这三个时间段逐一进行分析即可确定答案.【详解】∵从某时刻开始内只进水不出水,容器内存水;∴此时容器内的水量随时间的增加而增加,∵随后的内既进水又出水,容器内存水,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选A.【点睛】本题考查了函数的图象,弄清题意,正确进行分析是解题的关键.9、B【解析】

根据一元二次方程的定义即可求解.【详解】由一元二次方程的定义可知①为一元二次方程,符合题意②不是方程,不符合题意③是分式方程,不符合题意④当a=0时,不是一元二次方程,不符合题意故选B.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.10、A【解析】

证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【详解】①,,,,,四边形是平行四边形,故①正确;②是的中点,,,是等腰三角形,故②正确;③,,,,四边形是平行四边形,,,,,,,四边形的周长是故③正确;④四边形的面积:,故④错误,故选.【点睛】此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB长.二、填空题(每小题3分,共24分)11、【解析】

根据不等式的性质逐一进行解答即可得.【详解】若,根据不等式性质2,两边同时乘以3,不等号方向不变,则;根据不等式性质3,不等式两边同时乘以-1,不等号方向改变,则有,再根据不等式性质1,两边同时加上1,不等号方向不变,则,故答案为:;.【点睛】本题考查了不等式性质,熟练掌握不等式的性质是解题的关键.不等式的性质:不等式的两边加上或减去同一个数或式子,不等号的方向不变;不等式两边同时乘以或除以同一个不为0的正数,不等号的方向不变;不等式两边同时乘以或除以同一个不为0的负数,不等号的方向改变.12、1.【解析】

解:.故答案为113、2【解析】

依据四边形ABCD是矩形,E是CD的中点,可得AB=CD=4,DE=2,由折叠可得,AE=AB=4,再根据勾股定理,即可得到AD的长.【详解】∵四边形ABCD是矩形,E是CD的中点,

∴AB=CD=4,DE=2,

由折叠可得,AE=AB=4,

又∵∠D=90°,

∴Rt△ADE中,故答案为:2【点睛】本题主要考查了折叠问题以及勾股定理的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.14、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形【解析】

利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.【详解】解:由作法得AD=BD=AB=a,CD=CB=a,∴△ABD为等边三角形,AB=BC=CD=AD,∴∠A=60°,四边形ABCD为菱形,故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.【点睛】本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.15、①②③⑤【解析】

根据三角形中位线定理得到EF=AB,EF∥AB,根据直角三角形的性质得到DF=AC,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E,F分别是BC,AC的中点,∴EF=AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=AC,∵AB=AC,EF=AB,∴EF=DF,故②正确;∵∠CAD=∠ACD=45°,点F是AC中点,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴AC=CD,∵AB=AC,∴AB=CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16、8或4【解析】

由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.【详解】解:∵AD=9,AE:ED=1:2,∴AE=3,ED=6,又∵EF=2>AB,分情况讨论:如下图:当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,CF=GD=ED+GE,在RT三角形GFE中,GE==2,则此时CF=6+2=8;如下图:当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,则此时CF=6-2=4;综上,CF的长为8或4.【点睛】本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.17、6cm.【解析】试题分析:由∠ADE=∠C,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长为6cm.故答案为6cm.考点:相似三角形的判定与性质.18、4【解析】

根据题意,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,由DM=,则BM=,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD为等边三角形,即可得到BD的长度.【详解】解:如图:连接BD,BM,则AC垂直平分BD,则BN=DN,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,∵AD=AB=4,M是AD的中点,∴AM=DM=,∴BM=,∵,∴△ABM是直角三角形,即∠AMB=90°;∵BM是△ABD的中线,∴△ABD是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD是等边三角形.三、解答题(共66分)19、(1)y=2x+2;(2)m=8【解析】

(1)设y-2=kx,把已知条件代入可求得k,则可求得其函数关系式,可知其函数类型;(2)把点的坐标代入可得到关于m的方程,可求得m的值.【详解】(1)设y-2=kx,把x=1,y=4代入求得k=2,∴函数解析式是y=2x+2;(2)∵点P(3,m)在这个函数图象上,∴m=2×3+2=8.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.20、A的坐标是(1,4),y2=.【解析】

把y=4代入y1=2x+2可求得A的横坐标,则A的坐标即可确定,再利用待定系数法求得反比例函数的解析式.【详解】把y=4代入y=2x+2,得2x+2=4,解得:x=1,则A的坐标是(1,4).把(1,4)代入y2=得:k=1×4=4,则反比例函数的解析式是:y2=.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是熟知待定系数法的运用.21、x=-1【解析】

分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:1+6-x=-1x+6,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.22、(1),;(2)或.【解析】

(1)利用待定系数法即可解决问题;(2)观察图象写出反比例函数图象在一次函数的图象上方的x的取值范围即可.【详解】解:(1)把A(1,1)代入中,得到m=1,∴反比例函数的解析式为y=,把B(n,1)代入y=中,得到n=1;(2)∵A(1,1),B(1,1),观察图象可知:不等式成立时,x的取值范围是0<x≤1或x≥1.【点睛】本题考查一次函数与反比例函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会利用图象法解决取值范围问题,属于中考常考题型.23、(1)每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)B型展台最多可租用31个.【解析】

(1)首先设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,根据关键语句“用1600元租用的A型展台的数量与用2400元租用的B型展台的数量相同.”列出方程,解方程即可.(2)根据预计投入资金至多80000元,列不等式可解答.【详解】解:(1)设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,由题意得:,解得:x=800,经检验:x=800是原分式方程的解,∴B型展台价格:x+400=800+400=1200,答:每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)设租用B型展台a个,则租用A型展台(a+22)个,800(a+22)+1200a≤80000,a≤31.2,答:B型展台最多可租用31个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A、B两种展台的租用价格,确认相等关系和不等关系是解决问题的关键.24、见解析.【解析】

利用平行线分线段成比例定理即可证明;【详解】证明:∵DE∥BC,∴=,∵DF∥BE,∴=,∴=.【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理,属于中考常考题型.25、(1)平行四边形,理由见解析;(2)①矩形,②AB=AC,∠BAC=1.【解析】

(1)由“AAS”可证△AEF≌△DEB,可得AF=BD=CD,由平行四边形的判定可得四边形AFCD是平行四边形;

(2)①由等腰三角形的性质可得AD⊥BC,可证平行四边形AFCD是矩形;

②由等腰直角三角形的性质可得AD=CD=BD,AD⊥BC,可证平行四边形AFCD是正方形.【详解】解:(1)平行四边形理由如下:∵AF∥BC∴∠AFE=∠DBE,在ΔAFE与△DBE中∴ΔAFE≌ΔDBE∴AF=BD,又BD=CD∴AF=CD又AF∥CD∴四边形AFCD是平行四边形;(2)①∵AB=AC,AD是BC边上的中线

∴AD⊥BC,且四边形AFCD是平行四边形

∴四边形AFCD是矩形;

②当△ABC满足AB=AC,∠BAC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论