湖北省荆州市松滋市2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第1页
湖北省荆州市松滋市2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第2页
湖北省荆州市松滋市2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第3页
湖北省荆州市松滋市2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第4页
湖北省荆州市松滋市2024年八年级下册数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省荆州市松滋市2024年八年级下册数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,的顶点在轴上,定点的坐标为,若直线经过点,且将平行四边形分割成面积相等的两部分,则直线的表达式()A. B. C. D.2.已知不等式的解集是,下列各图中有可能是函数的图象的是()A. B.C. D.3.比较A组、B组中两组数据的平均数及方差,一下说法正确的是()A.A组,B组平均数及方差分别相等 B.A组,B组平均数相等,B组方差大C.A组比B组的平均数、方差都大 D.A组,B组平均数相等,A组方差大4.已知,若当时,函数的最大值与最小值之差是1,则a的值为()A. B. C.2 D.35.a,b,c为常数,且,则关于x的方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为06.下列各式成立的是()A. B. C.(﹣)2=﹣5 D.=37.下列四个选项中运算错误的是()A. B. C. D.8.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的()A.众数 B.平均数 C.频数 D.方差9.一次函数的图像如图,那么下列说法正确的是().A.时, B.时, C.时, D.时,10.用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A.(1)(2)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)11.若关x的分式方程有增根,则m的值为()A.3 B.4 C.5 D.612.已知直线l经过点A(4,0),B(0,3).则直线l的函数表达式为()A.y=﹣x+3 B.y=3x+4 C.y=4x+3 D.y=﹣3x+3二、填空题(每题4分,共24分)13.如图,小丽在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网3米的位置上,已知她的击球高度是2.4米,则她应站在离网________米处.14.甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:甲乙丙丁方差则四个人中成绩最稳定的是______.15.直线向下平移2个单位长度得到的直线是__________.16.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为_____.17.图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.18.在反比例函数图象的毎一支曲线上,y都随x的增大而减小,则k的取值范围是__________.三、解答题(共78分)19.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:)绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题(1)表中=,=;(2)请把频数分布直方图补充完整;(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?20.(8分)在平面直角坐标系xOy中,直线l1:过点A(3,0),且与直线l2:交于点B(m,1).(1)求直线l1:的函数表达式;(2)过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,直接写出n的取值范围.21.(8分)如图,在平行四边形中,,是中点,在延长线上,连接相交于点.(1)若,求平行四边形的面积;(2)若,求证:.22.(10分)(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=223.(10分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.(1)试求点的运动速度;(2)求出此时、两点间的距离.24.(10分)已知x=+1,y=﹣1,求x2+y2的值.25.(12分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y与x的几组对应值:x1234y4322234请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号函数图象特征函数变化规律示例1在直线x=1右侧,函数图象呈上升状态当x>1时,y随x的增大而增大示例2函数图象经过点(2,2)当x=2时,y=2①函数图象的最低点是(1,2)②在直线x=1左侧,函数图象呈下降状态(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为.26.如图,正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,,H在BC延长线上,且CH=AF,连接DF,DE,DH。(1)求证DF=DH;(2)求的度数并写出计算过程.

参考答案一、选择题(每题4分,共48分)1、A【解析】

由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,可用待定系数法确定直线DE的表达式.【详解】解:由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,设直线的表达式为,将点,代入得:解得所以直线的表达式为故答案为:A【点睛】本题主要考查了平行四边形中心对称的性质及待定系数法求直线表达式,明确直线过平行四边形对角线的交点是解题的关键.2、A【解析】

不等式mx+n>0的解集为直线y=mx+n落在x轴上方的部分对应的x的取值范围是x>-2,根据图象判断即可求解.【详解】解:A、不等式mx+n>0的解集是x>-2,故选项正确;

B、不等式mx+n>0的解集是x<-2,故选项错误;

C、不等式mx+n>0的解集是x>2,故选项错误;

D、不等式mx+n>0的解集是x<2,故选项错误.

故选:A.【点睛】本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=mx+n的值大于0的自变量x的取值范围.3、D【解析】

由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0,则分别计算出平均数及方差即可.【详解】解:由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0则A组的平均数为:,B组的平均数为:,A组的方差为:,B组的方差为:,∴,综上,A组、B组的平均数相等,A组的方差大于B组的方差故选D.【点睛】本题考查了平均数,方差的求法.平均数表示一组数据的平均程度;方差是用来衡量一组数据波动大小的量.4、C【解析】

根据反比例函数的性质和题意,利用分类讨论的数学思想可以求得a的值,本题得以解决.【详解】解:当时,函数中在每个象限内,y随x的增大而增大,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=-2(舍去),当a>0时,函数中在每个象限内,y随x的增大而减小,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=2,故选择:C.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和分类讨论的数学思想解答.5、B【解析】试题解析:∵,∴ac<1.在方程中,△=≥﹣4ac>1,∴方程有两个不相等的实数根.故选B.6、D【解析】

根据根式的计算法则计算即可.【详解】解:A、原式=,不符合题意;B、原式为最简结果,不符合题意;C、原式=5,不符合题意;D、原式=3,符合题意,故选:D.【点睛】本题主要考查根式的计算,这是基本知识点,应当熟练掌握.7、C【解析】

根据二次根式的运算法则,逐一计算即可.【详解】A选项,,正确;B选项,,正确;C选项,,错误;D选项,,正确;故答案为C.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.8、D【解析】

根据只有方差是反映数据的波动大小的量,由此即可解答.【详解】众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.所以为了判断成绩是否稳定,需要知道的是方差.故选D.【点睛】本题考查统计学的相关知识.注意:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数;方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、D【解析】

根据函数图象可以直接得到答案.【详解】A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选D.【点睛】考查了一次函数图象和一次函数的性质,解答此题,需要学生具备一定的读图能力,难度中等.10、A【解析】试题分析:根据全等的直角三角形的性质依次分析各小题即可判断.用两个全等的直角三角形一定可以拼成平行四边形、矩形、等腰三角形故选A.考点:图形的拼接点评:图形的拼接是初中数学平面图形中比较基础的知识,,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.11、D【解析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【详解】去分母得:2x-x+3=m,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=6,故选D.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.12、A【解析】

根据已知条件可直接写出函数表达式,清楚y=kx+b中k和b与x轴y轴交点之间的关系即可求解【详解】解:∵A(4,0),B(0,3),∴直线l的解析式为:y=﹣x+3;故选:A.【点睛】此题主要考查一次函数的解析式,掌握k和b与直线与x轴y轴交点之间的关系是解题关键二、填空题(每题4分,共24分)13、6【解析】

由题意可得,△ABE∽△ACD,故,由此可求得AC的长,那么BC的长就可得出.【详解】解:如图所示:已知网高,击球高度,,由题意可得,∴∴,∴,∴她应站在离网6米处.故答案为:6.【点睛】本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.14、甲【解析】

根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【详解】解:,四个人中成绩最稳定的是甲.故答案为:甲.【点睛】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、【解析】

根据一次函数图象几何变换的规律得到直线y=1x向下平移1个单位得到的函数解析式为y=1x-1.【详解】解:直线y=1x向下平移1个单位得到的函数解析式为y=1x-1故答案为:y=1x-1【点睛】本题考查了一次函数图象几何变换规律:一次函数y=kx(k≠0)的图象为直线,直线平移时k值不变,当直线向上平移m(m为正数)个单位,则平移后直线的解析式为y=kx+m.当直线向下平移m(m为正数)个单位,则平移后直线的解析式为y=kx-m.16、1【解析】

因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为1.【详解】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=1故答案为1【点睛】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.17、【解析】

过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.【详解】解:过作,正方形,,,,,,且,,,,,当时,的最小值为故答案为:【点睛】本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.18、【解析】

根据反比例函数中,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k-3>0,解可得k的取值范围.【详解】根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k−3>0,解得k>3.故答案为:k>3【点睛】此题考查反比例函数的性质,解题关键在于当反比例函数的系数大于0时得到k-3>0三、解答题(共78分)19、(1)8,20(2)见解析(3)330人【解析】

(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;

(2)根据(1)中b的值可以将频数分布直方图补充完整;

(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.【详解】(1)由频数分布直方图可知,a=8,

b=50-8-12-10=20,

故答案为:8,20;

(2)由(1)知,b=20,

补全的频数分布直方图如图所示;(3)550×=330(人),

答:该年级学生立定跳远成绩优秀的学生有330人.【点睛】本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1);(2)【解析】

(1)利用求出点B的坐标,再将点A、B的坐标代入求出答案;(2)求出直线与直线的交点坐标即可得到答案.【详解】(1)解:∵直线l2:过点B(m,1),∴∴m=2,∴B(2,1),∵直线l1:过点A(3,0)和点B(2,1)∴,解得:,∴直线l1的函数表达式为(2)解方程组,得,当过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,即点P在图象交点的左侧,∴【点睛】此题考查一次函数的解析式,一次函数图象交点坐标与方程组的关系,(2)是难点,确定交点坐标后,在交点的左右两侧取点P通过作垂线即可判断出点P的位置.21、(1)18;(2)见解析【解析】

(1)过点A作AH⊥BC于H,由AC=BC,∠ABC=75°,得出∠ACB=30°,则AH=AC=BC=3,S平行四边形ABCD=2S△ABC=2×BC•AH,即可得出结果;(2)过点A作AN∥CE,交BG于N,则∠ECA=∠CAN,由E是AB中点得出EF是△ABN的中位线,则EF=AN,证明∠GBC=∠ECA,∠GBC=∠G,∠ACB=∠CAG得出∠ECB=∠ECA=∠CAN=∠GAN,推出∠GAN=∠G,则AN=GN,由平行线的性质得出==1,得出BF=FN,即可得出结论.【详解】(1)解:作,垂足为,则∵,∴,∴,∴;(2)过点A作AN∥CE,交BG于N,如图2所示:则∠ECA=∠CAN,

∵E是AB中点,

∴EF是△ABN的中位线,

∴EF=AN,

∵AC=BC,E是AB中点,

∴∠ECB=∠ECA,

∵∠GBC=∠ECB,

∴∠GBC=∠ECA,

∵四边形ABCD是平行四边形,

∴BC∥AD,

∴∠GBC=∠G,∠ACB=∠CAG,

∴∠ECB=∠ECA=∠CAN=∠GAN,

∴∠GAN=∠G,

∴AN=GN,

∵EF∥AN,,∴BF=FN,

∴GF=GN+FN=AN+BF,

∴GF=BF+2EF.【点睛】考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质、全等三角形的判定与性质、三角形中位线的判定与性质、平行四边形与三角形面积的计算等知识,熟练掌握平行四边形的性质、构建三角形中位线、证明等腰三角形是解题的关键.22、(1)m+1;(2)1【解析】

(1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.(2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.【详解】解:(1)原式==m+1;(2)原式=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=1.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.23、(1);(2)D、E两点间的距离为或1.【解析】

(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.分两种情形分别构建方程即可解决问题.(2)分两种情形利用相似三角形的性质解决问题即可.【详解】解:(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.①当时,△ADE∽△ABC,∴,解得x=,∴点E的运动速度为cm/s.②当,△ADE∽△ACB,∴,∴x=,∴点E的是的为cm/s.(2)当△ADE∽△ABC时,,∴,∴DE=,当△ADE∽△ACB时,,∴,∴DE=1,综上所述,D、E两点间的距离为或1.【点睛】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24、1【解析】

先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.【详解】先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.解:∵x=+1,y=﹣1,∴x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论