广东省湛江地区六校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第1页
广东省湛江地区六校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第2页
广东省湛江地区六校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第3页
广东省湛江地区六校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第4页
广东省湛江地区六校联考2024年数学八年级下册期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省湛江地区六校联考2024年数学八年级下册期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.要使式子3-x有意义,则x的取值范围是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤32.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是A. B. C. D.3.某校在体育健康测试中,有名男生“引体向上”的成绩(单位:次)分别是,,,,,,,,这组数据的中位数和众数分别是()A., B., C., D.,4.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2 B.4 C.8 D.45.如图,在中,于点,于点,是的中点,连结,设,则()A. B. C. D.6.在实数范围内有意义,则应满足的条件是()A. B. C. D.7.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定 B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同 D.甲、乙射击成绩稳定性无法比较8.点关于x轴对称的点的坐标是A. B. C. D.9.周长为4cm的正方形对角线的长是()A.42cm B.22cm10.如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为()A. B. C. D.11.如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于4m,同时梯子的顶端B下降至B′,那么BB′的长为()A.等于1m B.大于1m C.小于1m D.以上答案都不对12.如果反比例函数y=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.3二、填空题(每题4分,共24分)13.如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.14.若分式的值为,则的值为_______.15.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.16.如图所示,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠C的度数是____.17.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.18.已知正n边形的每一个内角为150°,则n=_____.三、解答题(共78分)19.(8分)已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.(1)求证:OE=OF;(2)连接BE,DF,求证:BE=DF.20.(8分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.(1)问:第一次每本的进货价是多少元?(2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?21.(8分)(1)分解因式:a(a﹣b)﹣b(a﹣b);(2)已知x+2y=4,求3x2+12xy+12y2的值.22.(10分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线相交于B、C两点(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m,n)(m<0),过点E(0,-1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.23.(10分)若m,n,p满足m-n=8,mn+p2+16=0,求m+n+p的值?24.(10分)如图所示,在ΔABC中,点D在BC上,CF⊥AD于F,且CF平分∠ACB,AE=EB.求证:EF=125.(12分)经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)当每吨售价是240元时,此时的月销售量是多少吨.(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?26.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x⩾0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。例如:一次函数y=x−1,它们的相关函数为y=.(1)已知点A(−5,8)在一次函数y=ax−3的相关函数的图象上,求a的值;(2)已知二次函数y=−x+4x−.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当−3⩽x⩽3时,求函数y=−x+4x−的相关函数的最大值和最小值.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据被开方数是非负数,可得答案.【详解】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2、D【解析】

根据菱形的面积列出等式后即可求出y关于x的函数式.【详解】由题意可知:10=xy,∴y=(x>0),故选:D.【点睛】本题考查反比例函数,解题的关键是熟练运用菱形的面积公式,本题属于基础题型.3、B【解析】

先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】解:原数据按由小到大排列为:7,8,9,10,1,1,14,16,所以这组数据的中位数==11,众数为1.故选:B.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义,由此即可解答.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.4、A【解析】

利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,OA=OC,∵AC⊥BC,AB=10,∴,∴,∴;故选:A.【点睛】本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.5、A【解析】

由垂直的定义得到∠ADB=∠BEA=90°,根据直角三角形的性质得到AF=DF,BF=EF,根据等腰三角形的性质得到∠DAF=∠ADF,∠EFB=∠BEF,于是得到结论.【详解】解:∵AE⊥BC于点E,BD⊥AC于点D;∴∠ADB=∠BEA=90°,∵点F是AB的中点,∴AF=DF,BF=EF,∴∠DAF=∠ADF,∠EBF=∠BEF,∴∠AFD=180°-2∠CAB,∠BFE=180°-2∠ABC,∴x°=180°-∠AFD-∠BFE=2(∠CAB+∠CBA)-180°=2(180°-y°)-180°=180°-2y°,∴,故选:A.【点睛】本题考查了直角三角形的性质,等腰三角形的性质,三角形的内角和,正确的识别图形是解题的关键.6、D【解析】

根据二次根式有意义的条件解答即可.【详解】解:由题意得:x+1≥0,解得x≥-1,故答案为D.【点睛】本题考查了二次根式有意义的条件,即牢记二次根式有意义的条件为被开方数大于等于零是解答本题的关键.7、B【解析】

要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【详解】∵这组数中的众数是8,∴a,b,c中至少有两个是8,∵平均数是6,∴a,b,c三个数其中一个是2,∴s甲2=1∵5>4,∴乙射击成绩比甲稳定.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、A【解析】

根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行求解即可得.【详解】由平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得:点p关于x轴的对称点的坐标是,故选A.【点睛】本题考查了关于x轴对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.9、D【解析】

先根据正方形的性质得到正方形的边长为1cm,然后根据勾股定理得到正方形对角线的长.【详解】解:∵正方形的周长为4cm,∴正方形的边长为1cm,∴正方形的对角线的长为12+12故选:D.【点睛】本题考查了正方形的性质和勾股定理,根据正方形的四条边相等得出直角三角形的两直角边长是解决此题的关键.10、A【解析】

解:阴影部分的面积为2+4=6∴镖落在阴影部分的概率为=.考点:几何概率.11、C【解析】

由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】在直角三角形AOB中,∵OA=2,OB=7∴AB=(m),由题意可知AB=A′B′=(m),又∵OA′=4,根据勾股定理得:OB′=(m),∴BB′=7﹣<1.故选C.【点睛】本题考查了勾股定理的应用,属于基础题,解答本题的关键是掌握勾股定理的表达式.12、D【解析】

此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【详解】根据题意,得-2=,即2=k-1,解得,k=1.故选D.考点:待定系数法求反比例函数解析式.二、填空题(每题4分,共24分)13、【解析】

过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.【详解】解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:∵四边形OEFG是正方形,∴OE=OG,∠EOG=90°,∴∠GOH+∠EOI=90°,又∵∠OEI+∠EOI=90°,∴∠OEI=∠GOH,在△EOI和△OGH中,,∴△EOI≌△OGH(AAS),∴OH=EI=3,GH=OI=2,∵点G在第二象限,∴点G的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.14、【解析】

分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】由题意可得3-2x=1,解得x=,又∵2+3x≠1,解得x=.【点睛】此题考查分式的值为零的条件,解题关键在于掌握运算法则15、24【解析】

设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.16、100°.【解析】

根据直角三角形两锐角互余,平行四边形的性质即可解决问题.【详解】∵AF⊥DE,∴∠AFD=90°,∵∠DAF=50°,∴∠ADF=90°﹣50°=40°,∵DE平分∠ADC,∴∠ADC=2∠ADF=80°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠ADC=180°,∴∠C=100°故答案为100°.【点睛】本题考查平行四边形的性质、直角三角形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、1【解析】

先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.【详解】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB==9m.同理,在Rt△COD中,DO==12m,∴BD=OD﹣OB=12﹣9=1(m).故答案是:1.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.18、1【解析】试题解析:由题意可得:解得故多边形是1边形.故答案为1.三、解答题(共78分)19、(1)见解析;(2)见解析.【解析】

由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF;由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OB=OD,又由OE=OF,可证得四边形DEBF是平行四边形,由平行四边形的性质可得BE=DF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△AOF≌△COE(ASA),∴OE=OF;(2)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵OE=OF,∴四边形DEBF是平行四边形,∴BE=DF.【点睛】本题考查的知识点是平行四边形的性质,解题关键是熟记平行四边形性质.20、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.【解析】

(1)设第一次每本的进货价是x元,根据提价之后用6000元购进数量比第一次少了1000本,列方程求解;(2)设售价为y元,根据获利不低于4200元,列不等式求解【详解】解:(1)设第一次每本的进货价是x元,由题意得:=1000,解得:x=1.答:第一次每本的进货价是1元;(2)设售价为y元,由题意得,(6000+2000)y﹣12000≥4200,解得:y≥1.2.答:每本售价为1.2元.考点:分式方程的应用;一元一次不等式的应用21、(1)(a﹣b)2;(2)1.【解析】

(1)直接提取公因式(a-b),进而分解因式得出答案(2)直接利用提取公因式法分解因式进而把已知代入得出答案【详解】解:(1)a(a﹣b)﹣b(a﹣b)=(a﹣b)(a﹣b)=(a﹣b)2;(2)∵x+2y=4,∴3x2+12xy+12y2=3(x2+4xy+4y2)=3(x+2y)2把x+2y=4代入得:原式=3×42=1.【点睛】此题考查提取公因式法,掌握运算法则是解题关键22、(1);(2)存在;M点坐标为:(-3,),,;(3)△RFS是直角三角形;证明见详解.【解析】

(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,),则D(x,x2),表示出DM,分类讨论列方程求解;(3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=∠BFC=90°,所以△RFS是直角三角形.【详解】解:(1)因为点C在抛物线上,所以C(1,),又∵直线BC过C、F两点,故得方程组:解之,得,所以直线BC的解析式为:;(2)存在;理由如下:要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,设M(x,),则D(x,x2),∵MD∥y轴,∴,由MD=OF,可得:;①当时,解得:x1=0(舍)或x1=-3,所以M(-3,);②当时,解得:,所以M或M,综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,M点坐标为:(-3,),,;(3)△RFS是直角三角形;理由如下:过点F作FT⊥BR于点T,如图2所示,∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,,∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS=∠BFC=90°,∴△RFS是直角三角形.【点睛】本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.解题的关键是掌握待定系数法求解析式,以及学会运用分类讨论和数形结合等数学思想去解题.23、m+n+p=0.【解析】试题分析:把m,n,p看成是未知数,本题已知两个方程求三个未知数,因此可以采用主元法,将其中一个未知数看成常数,另外两个当作未知数进行解答,本题由m-n=8,可得:m=n+8,把m=n+8代入mn+p2+16=0,得n2+8n+16+p2=0,即(n+4)2+p2=0,根据非负数的非负性质可求出n=-4,p=0,所以m=4,因此m+n+p=4+(-4)+0=0.因为m-n=8,所以m=n+8.将m=n+8代入mn+p2+16=0中,得n(n+8)+p2+16=0,所以n2+8n+16+p2=0,即(n+4)2+p2=0.又因为(n+4)2≥0,p2≥0,所以,解得,所以m=n+8=4,所以m+n+p=4+(-4)+0=0.24、详见解析【解析】

首先根据已知易证ΔACF≅ΔDCF,可得F是AD中点,再根据三角形的中位线定理可得EF=1【详解】证明:∵CF⊥AD,CF平分∠ACB,∴∠AFC=∠DFC=90°,∠ACF=∠DCF,又∵CF=CF,∴ΔACF≅ΔDCF(ASA),∴AF=DF.又∵AE=EB,∴EF=1【点睛】此题主要考查了三角形中位线定理,以及全等三角形的判定和性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.25、(1)60;(2)将售价定为200元时销量最大.【解析】

(1)因为每吨售

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论