版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省宁南县2024年八年级数学第二学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各式正确的是()A. B.C. D.2.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,点B恰好落在AB的中点E处,则∠A等于()A.25° B.30° C.45° D.60°3.若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),则M是()A.x2+y2B.x2-xy+y2C.x2-3xy+y2D.x2+xy+y24.下列长度的三条线段能组成直角三角形的是()A.,, B.,, C.,, D.,,5.如图,四边形为平行四边形,延长到点,使,连接,,.添加一个条件,不能使四边形成为矩形的是()A. B. C. D.6.下列图形中,不是轴对称图形的是()A.矩形 B.菱形 C.平行四边形 D.正方形7.某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是A. B.C. D.8.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=1.将腰CD以D为旋转中心逆时针旋转90°至DE,连结AE,则△ADE的面积是()A.32 B.2 C.529.无理数在两个整数之间,下列结论正确的是()A.2~3之间 B.3~4之间 C.4~5之间 D.5~6之间10.如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC连接AE交CD于点F,则∠AFC等于()A.112.5° B.120° C.135° D.145°11.如图,把矩形ABCD沿对角线BD折叠,重叠部分为△EBD,则下列说法可能错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE=30°12.下列命题中是真命题的是()A.若a>b,则3﹣a>3﹣bB.如果ab=0,那么a=0,b=0C.一组对边相等,另一组对边平行的四边形是平行四边形D.有两个角为60°的三角形是等边三角形二、填空题(每题4分,共24分)13.如图,平行四边形中,点是边上一点,连接,将沿着翻折得,交于点.若,,,则_____.14.在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.15.已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,x2的大小关系是_____.16.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于_____.17.如果a2-ka+81是完全平方式,则k=________.18.当x_____时,二次根式有意义.三、解答题(共78分)19.(8分)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.20.(8分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由两工程队先后接力完成.工作队每天整治12米,工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示________________,y表示_______________;乙:x表示________________,y表示_______________.(2)求两工程队分别整治河道多少米.(写出完整的解答过程)21.(8分)如图,直线y=-34x+6分别与x轴、y轴交于A、B两点:直线y=54x与AB于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的进度沿x轴向左运动.过点E作x轴的垂线,分別交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠的图形的周长为L个单位长度,点E的运动时间为(1)直接写出点C和点A的坐标.(2)若四边形OBQP为平行四边形,求t的值.(3)0<t<5时,求L与t之间的函数解析式.22.(10分)已知:关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,且该方程的根都是整数,求m的值.23.(10分)如图,已知的三个顶点的坐标分别为、、.(1)请直接写出点关于原点对称的点的坐标;(2)将绕坐标原点逆时针旋转得到,画出,直接写出点、的对应点的点、坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.24.(10分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:ΔABD≅ΔBEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.25.(12分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为1.26.如果一组数据﹣1,0,2,3,x的极差为6(1)求x的值;(2)求这组数据的平均数.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据分式的性质,分式的加减,可得答案.【详解】A、c=0时无意义,故A错误;B、分子分母加同一个整式,分式的值发生变化,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;D、,故D错误;故选C.【点睛】本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.2、B【解析】
先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.3、D【解析】分析:运用提公因式法将等式左边的多项式进行因式分解即可求解.详解:(x+y)3-xy(x+y)=(x+y)[(x+y)2-xy]=(x+y)(x2+xy+y2)=(x+y)·M∴M=x2+xy+y2故选D.点睛:此题主要考查了提取公因式法的应用以及完全平方公式的应用,正确运用(x+y)2=x2+2xy+y2是解题关键.4、B【解析】
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角;【详解】A.2+3≠4,故该三角形不是直角三角形;B.3+4=5,故该三角形是直角三角形;C.4+5≠6,故该三角形不是直角三角形;D.5+6≠7,故该三角形不是直角三角形.故选B【点睛】此题考查勾股定理逆定理,解题关键在于理解勾股定理逆定理的内容.5、C【解析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;C、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选:C.【点睛】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.6、C【解析】
根据轴对称图形的定义即可判断.【详解】A.
矩形是轴对称图形,不符合题意;
B.
菱形是轴对称图形,不符合题意;
C.
平行四边形不是轴对称图形,符合题意;
D.
正方形是轴对称图形,不符合题意;
故选:C.【点睛】本题考查轴对称图形的定义,解题的关键是掌握轴对称图形的定义.7、B【解析】
根据条形图,观察可得15岁的人数最多,因此可得众数是15,将岁数从大到小排列,根据最中间的那个数就是中位数.【详解】首先根据条形图可得15岁的人数最多,因此可得众数是15;将岁数从大到小排列,根据条形图可知有人数:,因此可得最中间的11和12个的平均值是中位数,11和12个人都是15岁,故可得中位数是15.【点睛】本题主要考查众数和中位数的计算,是数据统计的基本知识,应当熟练掌握.8、A【解析】
作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,首先利用旋转的性质证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,即可求出三角形ADE的面积.【详解】解:如图所示,作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=3,BC=1,∴CG=BC-AD=1-3=1,∴EF=1,∴△ADE的面积是12故选A.【点睛】本题考查了梯形的性质、旋转的性质和全等三角形的判定与性质,对于旋转来说,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①旋转中心;②旋转方向;③旋转角度.本题证明△DCG与△DEF全等正是充分运用了旋转的性质.9、B【解析】
先看13位于哪两个相邻的整数的平方之间,再将不等式的两边同时开方即可得出答案.【详解】∵∴,故选B.【点睛】本题考查估算无理数的大小,平方根,本题的解题关键是掌握“夹逼法”估算无理数大小的方法.10、A【解析】
根据正方形的性质及已知条件可求得∠E的度数,从而根据外角的性质可求得∠AFC的度数.【详解】∵四边形ABCD是正方形,CE=CA,
∴∠ACE=45°+90°=135°,∠E=22.5°,
∴∠AFC=90°+22.5°=112.5°.
故答案为A.【点睛】本题考查正方形的性质,解题的关键是掌握正方形的性质.11、D【解析】
根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【详解】∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A.B选项正确;在△AEB和△CED中,∠BAE=∠DCE∠AEB=∠CEDAB=CD∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点睛】此题考查翻折变换(折叠问题),解题关键在于利用全等三角形的性质进行解答.12、D【解析】
分别判断各选项是否正确即可解答.【详解】解:A.若a>b,则3﹣a<3﹣b,故A错误;B.如果ab=0,那么a=0或b=0,故B错误;C.一组对边相等,另一组对边平行的四边形不一定是平行四边形,故C错误;D.有两个角为60°的三角形是等边三角形,故D正确;故选D.【点睛】本题考查了不等式的性质、平行四边形的判定、三角形的判定等知识,熟练掌握是解题的关键.二、填空题(每题4分,共24分)13、【解析】
通过证明△AB'F∽△DEF,可得,可求AB'的长,由折叠的性质可得AB=AB'=.【详解】解:∵AB′∥ED∴△AB'F∽△DEF∴∴∴AB'=∵将△ABE沿着AE翻折得△AB′E,∴AB=AB'=,故答案为:.【点睛】本题考查了翻折变换,平行四边形的性质,相似三角形的判定和性质,利用相似三角形的性质求线段的长度是本题的关键.14、丙【解析】
方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】因为=0.56,=0.60,=0.45,=0.50,所以<<<,由此可得成绩最稳定的为丙.故答案为:丙.【点睛】此题考查方差,解题关键在于掌握其定义.15、x1<x1.【解析】
根据题目中的函数解析式可以判断函数图象在第几象限和y随x的变化趋势,从而可以解答本题.【详解】∵反比例函数y=(x>0),∴该函数图象在第一象限,y随x的增大而减小,∵点P(x1,y1),Q(x1,y1)是反比例函数y=(x>0)图象上两点,y1>y1,∴x1<x1,故答案为:x1<x1.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.16、2【解析】试题分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.把x=1代入方程,即可得到一个关于m的方程,从而求得m的值,还要注意一元二次方程的系数不能等于1.试题解析:把x=1代入(m-1)x2+5x+m2-3m+2=1中得:m2-3m+2=1,解得:m=1或m=2,∵m-1≠1,∴m≠1,∴m=2.考点:一元二次方程的解.17、±18.【解析】
利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵二次三项式a2-ka+81是完全平方式,∴k=±18,故答案为:±18.【点睛】此题考查完全平方式,解题关键在于掌握运算法则18、x≥【解析】分析:根据二次根式的定义,形如的式子叫二次根式,列不等式解答.详解:由题意得2x-3≥0,∴x≥.故答案为x≥.点睛:本题考查了二次根式有意义的条件,明确被开方式大于且等于零是二次根式成立的条件是解答本题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析【解析】试题分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.考点:全等三角形的判定;菱形的判定;平行四边形的性质.20、(1)甲:表示工程队工作的天数,表示工程队工作的天数;乙:表示工程队整治河道的米数,表示工程队整治河道的米数.(2)两工程队分别整治了60米和120米.【解析】
此题主要考查利用基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,运用不同设法列出不同的方程组解决实际问题.(1)此题蕴含两个基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,由此进行解答即可;(2)选择其中一个方程组解答解决问题.【详解】试题解析:(1)甲同学:设A工程队用的时间为x天,B工程队用的时间为y天,由此列出的方程组为;乙同学:A工程队整治河道的米数为x,B工程队整治河道的米数为y,由此列出的方程组为;故答案为:A工程队用的时间,B工程队用的时间,A工程队整治河道的米数,B工程队整治河道的米数;(2)选甲同学所列方程组解答如下:,②-①×8得4x=20,解得x=5,把x=5代入①得y=15,所以方程组的解为,A工程队整治河道的米数为:12x=60,B工程队整治河道的米数为:8y=120;答:A工程队整治河道60米,B工程队整治河道120米.考点:二元一次方程组的应用.21、(1)C3,154,A8,0;(2)2;(【解析】
(1)把y=-34x+6和y=54x联立组成方程组,解方程组求得方程组的解,即可得点C的坐标;在直线y=-34x+6中,令y=0,求得x的值,即可得点A的坐标;(2)用t表示出点P、Q的坐标,求得PQ的长,由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,由此可得10-2t=6,即可求得t值;(3)由题意可知,正方形PQMN与△ACD重叠的图形是矩形,由此求得【详解】(1)C的坐标为(3,154),A的坐标为((2)∵点B直线y=-34x+6与∴B(0,6),∴OB=6,∵A的坐标为(8,0),∴OA=8,由题意可得,OE=8-t,∴P(8-t,-34(8-t)+6),Q(8-t∴QP=y由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,所以有10-2t=6,解得t=2;(3)当0<t<5时,L=2(10-2【点睛】本题是一次函数与结合图形的综合题,根据题意求得QP=10-2t是解决问题的关键.22、(1);(2)m的值为1.【解析】
(1)根据题意得出△>0,代入求出即可;
(2)求出m=1,2或1,代入后求出方程的解,即可得出答案.【详解】解:(1)∵关于x的方程有两个不相等的实数根,∴△=.∴;(2)∵且m为正整数,∴m可取1、2、1.当m=1时,的根不是整数,不符合题意;当m=2时,的根不是整数,不符合题意;当m=1时,,根为,,符合题意.∴m的值为1.【点睛】本题考查根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解题的关键.23、(1);(2)图详见解析,,;(3),,【解析】
(1)由关于原点O对称的点的坐标特点即可得出答案;(2)由旋转的性质即可得出答案;(3)分三种情况:①BC为对角线时;②AB为对角线时;③AC为对角线时;由平行四边形的性质即可得出答案.【详解】解:(1)∵A(-2,3),∴点A关于原点O对称的点的坐标为(2,-3);(2)将△ABC绕坐标原点O逆时针旋转90°,如图1所示:A′点的坐标为(-3,-2);(3)如图2所示:BC为对角线时,点D的坐标为(-5,-3);AB为对角线时,点D的坐标为(-7,3);AC为对角线时,点D的坐标为(3,3);综上所述,以A、B、C为顶点的平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《新材料设计与应用》2021-2022学年第一学期期末试卷
- 吉林艺术学院《美术鉴赏》2021-2022学年第一学期期末试卷
- 吉林艺术学院《构图原理》2021-2022学年第一学期期末试卷
- 2024年公租房代理退租协议书模板
- 吉林师范大学《油画头像技法解析》2021-2022学年第一学期期末试卷
- 吉林师范大学《小组工作》2021-2022学年第一学期期末试卷
- 2022年公务员多省联考《申论》真题(陕西A卷)及答案解析
- 合拍三人合伙协议书范文范本
- 舞蹈培训班承包协议书范文范本
- 吉林师范大学《数字图像技术》2021-2022学年期末试卷
- 注塑产品成本计算
- 安全意识远离危险
- 凯乐石行业分析
- 肺的健康宣教课件
- 《坦克的发展历程》课件
- 设备维保和维保服务外包
- 2018年公安机关人民警察高级执法资格试题
- 电动汽车的电控系统
- 安全运维堡垒机部署方案
- 2024届江苏省苏州市立达中学数学七年级第二学期期末综合测试试题含解析
- 国开电大绩效与薪酬实务(河北)形考任务三参考答案
评论
0/150
提交评论