安徽省蚌埠怀远县联考2024届八年级下册数学期末统考试题含解析_第1页
安徽省蚌埠怀远县联考2024届八年级下册数学期末统考试题含解析_第2页
安徽省蚌埠怀远县联考2024届八年级下册数学期末统考试题含解析_第3页
安徽省蚌埠怀远县联考2024届八年级下册数学期末统考试题含解析_第4页
安徽省蚌埠怀远县联考2024届八年级下册数学期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省蚌埠怀远县联考2024届八年级下册数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为()A. B.5 C. D.2.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.23.下列命题中是正确的命题为A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是平行四边形4.函数y=中,自变量x的取值范围在数轴上表示正确的是()A. B. C. D.5.关于的方程有两实数根,则实数的取值范围是()A. B. C. D.6.若顺次连接四边形各边中点所得到的四边形是菱形,则该四边形一定是()A.矩形 B.对角线相等的四边形C.正方形 D.对角线互相垂直的四边形7.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A.3个 B.不足3个C.4个 D.5个或5个以上8.下列运算正确的是()A.-= B.C.×= D.9.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣210.已知两点(x1,y1),A.y1>y2>0 B.11.下列命题,是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是正方形 D.对角线相等的菱形是正方形12.不等式的解集为().A. B. C. D.二、填空题(每题4分,共24分)13.如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.14.在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B之间的距离应为_________米.15.已知一次函数y=x+4的图象经过点(m,6),则m=_____.16.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.17.计算:_____.18.如图,在菱形中,,过的中点作,垂足为点,与的延长线相交于点,则_______,_______.三、解答题(共78分)19.(8分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.20.(8分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;(2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?(3)拓展探究:①解方程:+++=;②化简:++…+.21.(8分)先化简,再求值:(x+2-)•,其中x=3+.22.(10分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?23.(10分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.(1)求证:△ACM≌△BCN;(2)求∠BDA的度数;(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.25.(12分)解方程:(1)2x22x50(2)4x(2x1)3(2x1)26.如图,一次函数的图象与反比例函数的图象交于点和点.(1)求一次函数和反比例函数的解析式;(2)直接写出不等式的解集.

参考答案一、选择题(每题4分,共48分)1、C【解析】

如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.【详解】如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,∵AE=1,CF=2,∴DE=4,DF=3,∴EF==5,∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,∴•5•BG=25-•5•1-•5•2-•3•4,∴BG=,故选C.【点睛】本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.2、B【解析】试题解析:∵A(2,−2),①如图:若OA=AP,则②如图:若OA=OP,则③如图:若OP=AP,则综上可得:符合条件的点P有四解.故选B.点睛:等腰三角形的问题,一般都分类讨论.3、C【解析】

根据选项逐个判断是否正确即可.【详解】A错误,应该是要两条邻边相等的平行四边形是菱形.B错误,直角梯形有一个角是直角,但不是矩形.C正确.D错误,因为等腰梯形也有两条对角线相等且垂直.故选C.【点睛】本题主要考查命题是否正确,关键在于举出反例.4、B【解析】

根据函数y=可得出x-1≥0,再解出一元一次不等式即可.【详解】由题意得,x-1≥0,

解得x≥1.

在数轴上表示如下:

故选B.【点睛】本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.5、A【解析】

根据方程有实数根列不等式即可求出答案.【详解】∵方程有两实数根,∴∆,即16-4a,∴,故选:A.【点睛】此题考查一元二次方程的判别式,根据一元二次方程的根的情况求出未知数的值,正确掌握根的三种情况是解题的关键.6、B【解析】

根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【详解】解:∵点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EH∥AC,EH=AC,FG∥AC,FG=AC,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,根据题意得:四边形EFGH是菱形,∴EF=EH,∴AC=BD,∴原四边形一定是对角线相等的四边形.故选:B.【点睛】本题考查的是中点四边形、菱形的判定,掌握三角形中位线定理、菱形的判定定理是解题的关键.7、D【解析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.8、D【解析】试题分析:根据二次根式的混合运算的法则及二次根式的性质依次分析各选项即可作出判断.解:A.与不是同类二次根式,无法化简,B.,C.,故错误;D.,本选项正确.考点:实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.9、C【解析】试题分析:函数图像的平移法则为:上加下减,左加右减,则直线y=2x向左平移1个单位后的直线解析式为:y=2(x+1)=2x+2.10、D【解析】∵反比例函数y=-5x中,k=∴此函数图象的两个分支在二、四象限,∵x1>x2>0,∴两点都在第四象限,∵在第四象限内y的值随x的增大而增大,∴y2<y1<0.故选D.11、D【解析】

根据菱形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.【详解】解:A、对角线互相垂直的平行四边形是菱形,所以A选项错误;

B、对角线相等的平行四边形是矩形,所以B选项错误;

C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;

D、对角线相等的菱形是正方形,正确,是真命题;所以D选项正确.

故选:D.【点睛】本题考查度的是命题的真假判断以及矩形、菱形的判定正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.熟练掌握矩形、菱形的判定定理是解答此题的关键.12、B【解析】

先移项,再系数化为1即可得到不等式的解集.【详解】解:移项得:合并同类项得:系数化为1得:故选:B【点睛】本题考查了一元一次不等式的解法,熟练掌握计算法则是关键,当两边除以负数时,要注意不等号的方向要改变.二、填空题(每题4分,共24分)13、【解析】

如图,过点P作EF∥x轴,交y轴与点E,交AB于点F,则易证△CEP≌△PFD(ASA),∴EP=DF,∵P(1,1),∴BF=DF=1,BD=2,∵BD=2AD,∴BA=3∵点A在直线上,∴点A的坐标为(3,3),∴点D的坐标为(3,2),∴点C的坐标为(0,3),设直线CD的解析式为,则解得:∴直线CD的解析式为,联立可得∴点Q的坐标为.14、32【解析】分析:可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且AB=2DE,再根据DE的长度为16米,即可求出A、B两地之间的距离.详解:∵D、E分别是CA,CB的中点,

∴DE是△ABC的中位线,

∴DE∥AB,且AB=2DE,

∵DE=16米,

∴AB=32米.

故答案是:32.点睛:本题考查了三角形的中位线定理的应用,解答本题的关键是:明确三角形的中位线平行于第三边,并且等于第三边的一半.15、1【解析】试题分析:直接把点(m,6)代入一次函数y=x+4即可求解.解:∵一次函数y=x+4的图象经过点(m,6),∴把点(m,6)代入一次函数y=x+4得m+4=6解得:m=1.故答案为1.16、72【解析】试题解析:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是∴这四次旋转中,旋转角度最小是故答案为72.17、1【解析】【分析】根据同分母分式加减法的法则进行计算即可得.【详解】==1,故答案为1.【点睛】本题考查了同分母分式的加减法,熟练掌握同分母分式加减法的法则是解题的关键.18、1【解析】

由菱形的性质可得AB=AD=CD=4,AB∥CD,由“ASA”可证△AEF≌△DEH,可得AF=HD=1,由三角形面积公式可求△CEF的面积.【详解】∵四边形是菱形,∴.∵点是的中点,∴.∵,∴,∴.∵,∴,且,∴,∴,∴.∴.故答案为:1,.【点睛】此题考查菱形的性质,全等三角形的判定和性质,直角三角形的性质,证明AF=HD=1是解题的关键.三、解答题(共78分)19、(1)PB=PQ.证明见解析;(2)PB=PQ.证明见解析.【解析】试题分析:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;(2)证明思路同(1).试题解析:(1)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.考点:正方形的判定与性质;全等三角形的判定与性质.20、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②【解析】

(1)归纳总结得到一般性规律,写出即可;(2)根据题意列出关系式,利用得出的规律化简即可;(3)①方程变形后,利用得出的规律化简,计算即可求出解;②原式利用得出的规律变形,计算即可求出值.【详解】(1)根据题意得:=-;(2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,∵<1,∴按这种倒水方式,这1L水倒不完;(3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,[(1-)]•=,•=,解得:x=,经检验,x=是原方程的解,∴原方程的解为x=;②++…+==(-)+(-)+(-)+…+[-]=[-]=.【点睛】本题考查规律型:数字的变化类,解分式方程,分式的混合运算,解答本题的关键是根据所给式子找出规律,并利用规律解答.21、x-3,【解析】

原式括号内先通分,再算减法,然后进行分式的乘法运算,再把x的值代入化简后的式子计算即可.【详解】解:原式=•=•=•=x-3;当x=3+时,原式=3+-3=.【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.22、(1)6120元(2)答应涨价为5元.【解析】【分析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;(2)设涨价x元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解.【详解】(1)(500-8×20)×18=6120元,答:每天的总毛利润是6120元;(2)设每千克涨元,,,,(舍),又由于顾客得到实惠,答应涨价为5元.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.23、(1)25;0.10;(2)补图见解析;(3)200人.【解析】

(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【详解】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点睛】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.24、(1)见解析;(2)∠BDA=90°;(3)AM=.【解析】

(1)根据题意可知∠ACM=∠BCN,再利用SAS即可证明(2)根据(1)可求出∠ACE=∠BDE=90°,即可解答(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.可知AQ=QM=2a,QH=a,再求出a的值,利用勾股定理即可解答【详解】(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在△MAC和△NBC中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论