2024届岳阳市湘阴县数学八年级下册期末检测模拟试题含解析_第1页
2024届岳阳市湘阴县数学八年级下册期末检测模拟试题含解析_第2页
2024届岳阳市湘阴县数学八年级下册期末检测模拟试题含解析_第3页
2024届岳阳市湘阴县数学八年级下册期末检测模拟试题含解析_第4页
2024届岳阳市湘阴县数学八年级下册期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届岳阳市湘阴县数学八年级下册期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是()A. B. C. D.2.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对3.PM2.5是指大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.2.5×10-5 B.2.5×10-6 C.2.5×10-74.在□ABCD中,对角线AC与BD相交于点O,AC10,BD6,则下列线段不可能是□ABCD的边长的是()A.5 B.6 C.7 D.85.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A22OB22.则点B22的坐标()A.(222,-222) B.(22016,-22016) C.(222,222) D.(22016,22016)6.《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问題:“今有邑方不知大小,各中开门,出北门八十步有木,出西门二百四十五步见木,问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,ME=80步,NF=245步,则正方形的边长为()A.280步 B.140步 C.300步 D.150步7.如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED与△DFC的周长的和为()A.34 B.32 C.22 D.208.、、为三边,下列条件不能判断它是直角三角形的是()A. B.,,C. D.,,(为正整数)9.如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为(A.140° B.120° C.11010.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、4011.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=1.将腰CD以D为旋转中心逆时针旋转90°至DE,连结AE,则△ADE的面积是()A.32 B.2 C.5212.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大 B.不变C.逐渐变小 D.先变小后变大二、填空题(每题4分,共24分)13.如图,直线(>0)与轴交于点(-1,0),关于的不等式>0的解集是_____________.14.如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b﹣1>0的解集是_____.15.计算:(2﹣1)(1+2)=_____.16.平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b=_______.17.图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.18.在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.三、解答题(共78分)19.(8分)按照下列要求画图并作答:如图,已知.画出BC边上的高线AD;画的对顶角,使点E在AD的延长线上,,点F在CD的延长线上,,连接EF,AF;猜想线段AF与EF的大小关系是:______;直线AC与EF的位置关系是:______.20.(8分)某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?21.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F,(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.22.(10分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)23.(10分)2019年6月11日至17日是我国第29个全国节能宣传周,主题为“节能减耗,保卫蓝天”。某学校为配合宣传活动,抽查了某班级10天的用电量,数据如下表(单位:度):度数8910131415天数112312(1)这10天用电量的众数是___________,中位数是_________;(2)求这个班级平均每天的用电量;(3)已知该校共有20个班级,试估计该校6月份(30天)总的用电量.24.(10分)如图,在中,,平分,交于点,交的延长线于点,交于点.(1)求证:四边形为菱形;(2)若,,求的长.25.(12分)某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,请回答:(1)写出售价为50元时,每天能卖樱桃_____千克,每天获得利润_____元.(2)若该专卖店销售这种樱桃要想平均每天获利2240元,每千克樱桃应降价多少元?(3)若该专卖店销售这种樱桃要想平均每天获利最大,每千克樱桃应售价多少元?26.如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.⑴求证:四边形AEGD为菱形;⑵若,AD=2,求DF的长.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.【详解】解:∵正方形ABCD的边长为1,∴AB=BC=CD=DA=1由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,故选D.【点睛】此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.2、B【解析】

根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=[(a-2-3)2+(b-2-3)2+(c--2-3)2]=[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.3、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以:0.0000025=2.5×10-6;故选C.【考点】科学记数法—表示较小的数.4、D【解析】

根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA-OB<AB<OA+OB,代入求出即可.【详解】如图:,∵四边形ABCD是平行四边形,AC=10,BD=6,∴OA=OC=5,OD=OB=3,在△OAB中,OA−OB<AB<OA+OB,∴5−3<AB<5+3,即2<AB<8.同理可得AD、CD、BC的取值范围和AB相同.故选D.【点睛】本题主要考查三角形的三边关系和平行四边形的性质.牢记三角形的三边关系和平行四边形的性质是解题的关键.5、A【解析】∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,A1B1=OA1,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O,A2B2=A2O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,-4),B3(-8,8),B4(16,16),∵22÷4=504…1,∴点B22与B1同在第四象限,∵﹣4=﹣22,8=23,16=24,∴点B22(222,-222),故选A.【点睛】本题考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.6、A【解析】

根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=1∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴MEAN而据题意知AM=AN,∴AM解得:AM=140,∴AD=2AM=280步,故选:A.【点睛】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.7、B【解析】

首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明DE=BE,即可得到DE+DF=AB,从而得解.【详解】解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DF=AE,又∵DE∥AC,∴∠C=∠EDB,又∵AB=AC,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴DF+DE=AE+BE,∴△BED与△DFC的周长的和=△ABC的周长=10+10+12=32,故选:B.【点睛】本题主要考查了平行四边形的判定与性质,等腰三角形的判定,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.8、C【解析】

根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.【详解】解:A.即,根据勾股定理逆定理可判断△ABC为直角三角形;B.,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;C.根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;D.,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;故选:C【点睛】本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.9、C【解析】

根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【详解】∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°,故选:C.【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.10、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.11、A【解析】

作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,首先利用旋转的性质证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,即可求出三角形ADE的面积.【详解】解:如图所示,作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=3,BC=1,∴CG=BC-AD=1-3=1,∴EF=1,∴△ADE的面积是12故选A.【点睛】本题考查了梯形的性质、旋转的性质和全等三角形的判定与性质,对于旋转来说,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①旋转中心;②旋转方向;③旋转角度.本题证明△DCG与△DEF全等正是充分运用了旋转的性质.12、B【解析】

根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=1,此题得解.【详解】解:设点C的坐标为(m,-m+4)(0<m<4),则CE=m,CD=-m+4,∴C矩形CDOE=2(CE+CD)=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.二、填空题(每题4分,共24分)13、x>-1【解析】

先根据一次函数y=ax+b的图象交x轴交于点(-1,0)可知,当x>-1时函数图象在x轴的上方,故可得出结论.【详解】∵直线y=ax+b(a>0)与x轴交于点(-1,0),由函数图象可知,当x>-1时函数图象在x轴的上方,∴ax+b>0的解集是x>-1.故答案为:x>-1.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.14、x<1【解析】

由一次函数y=kx+b的图象过点(1,1),且y随x的增大而减小,从而得出不等式kx+b﹣1>1的解集.【详解】由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(1,1),∴当x<1时,有kx+b﹣1>1.故答案为x<1【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.15、7【解析】

根据二次根式的运算法则即可求出答案.【详解】原式=(2)2-1=8-1=7,故答案为:7.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.16、2【解析】

先写出直线l′的解析式为y=2x-1-b,代入点A的坐标得到n=2m-1-b,因为2m-n=3,即可解答出b的值.【详解】∵直线l′为y=2x-1沿y轴向下平移b个单位长度,∴直线l′:y=2x-1-b,∵点A(m,n)是直线l′上一点,∴n=2m-1-b又∵且2m-n=3,解得b=2.故答案为:2.【点睛】此题考查一次函数,解题关键在于一次函数图象的平移.17、【解析】

过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.【详解】解:过作,正方形,,,,,,且,,,,,当时,的最小值为故答案为:【点睛】本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.18、(-1,1)【解析】

根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】解:将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为(-1,1).故答案为(-1,1).【点睛】本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题(共78分)19、画图见解析;画图见解析;;.【解析】

(1)直接利用钝角三角形高线的作法得出答案;(2)利用圆规与直尺截取得出E,F位置进而得出答案;(3)利用已知线段和角的度数利用全等三角形的判定与性质分析得出答案.【详解】如图所示:高线AD即为所求;如图所示:猜想线段AF与EF的大小关系是:;理由:在和中,≌,;直线AC与EF的位置关系是:.理由:在和中,≌,,.故答案为;.【点睛】本题考查了作图,三角形全等的判定与性质等,正确作出钝角三角形的高线是解题关键.20、购进甲型号书柜1个,购进乙型号书柜2个.【解析】

设购进甲型号书柜x个,则购进乙型号书柜2x个,根据单价=总价÷数量结合乙型号书柜比甲型号书柜单价便宜了300元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设购进甲型号书柜x个,则购进乙型号书柜2x个,根据题意得:15000x解得:x=1.经检验,x=1是原方程的解,∴2x=2.答:购进甲型号书柜1个,购进乙型号书柜2个.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1)证明见解析;(2)证明见解析.【解析】

(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.22、a.240,b.乙;理由见解析.【解析】试题分析:(1)由表可知乙部门样本的优秀率为:,则整个乙部门的优秀率也是,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩人数部门甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.23、(1)13,13;(2)12;(3)估计该校6月份总的用电量约7200度【解析】

(1)分别利用众数、中位数的定义求解即可;

(2)用加权平均数的计算方法计算平均用电量即可;

(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)众数为13;中位数为13;(2)度;答:这个班级平均每天的用电量为12度(3)总用电量为度.答:估计该校6月份总的用电量约7200度【点睛】本题考查了统计的有关概念及用样本估计总体的知识,题目相对比较简单,属于基础题.24、(1)详见解析;(2)【解析】

1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;

(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,,由直角三角形的性质得出,得出,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.【详解】(1)证明:四边形是平行四边形,,,,,四边形是平行四边形,平分,,,,四边形为菱形;(2)解:连接交于,如图所示:四边形为菱形,,,,,是等边三角形,,,,,,,,,,,,,在和中,,,,.【点睛】本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.25、2002000(2)4元或6元(3)当销售单价为55元时,可获得销售利润最大【解析】试题分析:(1)根据每天能卖出樱桃=100+10×(60﹣10)计算即可得到每天卖的樱桃,根据利润=单价×数量计算出每天获得利润;(2)设每千克樱桃应降价x元,根据每千克的利润×数量=2240元,列方程求解;(3)设每千克樱桃应降价x元,根据利润y=每千克的利润×数量,列出函数关系式,利用配方法化成顶点式即可求出答案.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论