2024年浙江省金华市兰溪二中学数学八年级下册期末教学质量检测试题含解析_第1页
2024年浙江省金华市兰溪二中学数学八年级下册期末教学质量检测试题含解析_第2页
2024年浙江省金华市兰溪二中学数学八年级下册期末教学质量检测试题含解析_第3页
2024年浙江省金华市兰溪二中学数学八年级下册期末教学质量检测试题含解析_第4页
2024年浙江省金华市兰溪二中学数学八年级下册期末教学质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省金华市兰溪二中学数学八年级下册期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列计算中,①;②;③;④不正确的有()A.3个 B.2个 C.1个 D.4个2.如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定3.如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度

与注水时间

之间的函数关系图象可能是如图,某工厂有甲,乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度

与注水时间

之间的函数关系图象可能是()A. B. C. D.4.下列根式中是最简二次根式的是()A.12 B.15 C.0.3 D.5.已知y关于x成正比例,且当时,,则当时,y的值为A.3 B. C.12 D.6.如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为()A.4cm2 B.5cm2 C.20cm2 D.30cm27.若点在第四象限,则的取值范围是()A. B. C. D.8.如图,已知四边形ABCD是平行四边形,若AF、BE分别是、的平分线,,,则EF的长是A.1 B.2 C.3 D.49.下列关于变量的关系,其中不是的函数的是()A.B.C.D.10.下列关于变量,的关系,其中不是的函数的是()A. B.C. D.二、填空题(每小题3分,共24分)11.用科学记数法表示:__________________.12.已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).13.分式和的最简公分母是__________.14.将2019个边长为2的正方形,按照如图所示方式摆放,O1,O2,O3,O4,O5,…是正方形对角线的交点,那么阴影部分面积之和等于_____.15.菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为cm.。16.如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.17.如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.18.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.三、解答题(共66分)19.(10分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?20.(6分)如图,在中,AD是BC边上的中线,E是AD的中点,延长BE到F,使,连接AF、CF、DF.求证:;若,试判断四边形ADCF的形状,并证明你的结论.21.(6分)如图,▱ABCD中,E,F为对角线AC上的两点,且BE∥DF;求证:AE=CF.22.(8分)如图,在矩形ABCD中,AC=60cm,∠BAC=60°,点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,同时点F从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E,F运动的时间是t秒(0<t≤15).过点F作OF⊥BC于点O,连接OE,EF.(1)求证:AE=OF;(2)四边形AEOF能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△OEF为直角三角形?请说明理由.23.(8分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?24.(8分)如图,在中,,过点的直线,为边上一点,过点作,交直线于,垂足为,连接,.(1)求证:;(2)当为中点时,四边形是什么特殊四边形?说明你的理由;(3)当为中点时,则当的大小满足什么条件时,四边形是正方形?请直接写出结论.25.(10分)已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.(1)如图1,若k=1,求线段AB的长;(2)如图2,点C与点A关于y轴对称,作射线BC;①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;②y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围26.(10分)甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地后立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为时),与之间的函数图象如图所示(1)甲车从地到地的速度是__________千米/时,乙车的速度是__________千米/时;(2)求甲车从地到达地的行驶时间;(3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;(4)求乙车到达地时甲车距地的路程.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.【详解】解:①,故此选项错误,符合题意;②,故此选项错误,符合题意;③,故此选项正确,不符合题意;④,故此选项错误,符合题意;故选:A【点睛】此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.2、B【解析】

根据三角形中位线定理计算即可【详解】∵M、N分别是AC、BC中点,∴NM是△ACB的中位线,∴AB=2MN=80m,故选:B.【点睛】此题考查三角形中位线定理,解题关键在于掌握运算法则3、D【解析】

根据注水后水进入水池情况,结合特殊点的实际意义即可求出答案.【详解】解:该蓄水池就是一个连通器.开始时注入甲池,乙池无水,当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,此时甲池水位不变,所有水注入乙池,所以水位上升快.当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快.故选:D.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4、D【解析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、12=2B、15C、0.3=D、7是最简二次根式,本项正确;故选择:D.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5、B【解析】

先利用待定系数法求出,然后计算对应的函数值.【详解】设,当时,,,解得,,当时,.故选B.【点睛】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为,然后把一个已知点的坐标代入求出k即可.6、C【解析】

过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到,故可求的CD的长,进而求出正方形的面积.【详解】过D作直线EF与l2垂直,交l1与点E,交l4于点F.,即四边形ABCD为正方形在和中即正方形的面积为20故选C.【点睛】本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.7、D【解析】

根据第四象限内点的坐标特征为(+,-)列不等式求解即可.【详解】由题意得2m-1<0,∴.故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.8、B【解析】

由四边形ABCD是平行四边形,若AF、BE分别是、的平分线,易得与是等腰三角形,继而求得,则可求得答案.【详解】四边形ABCD是平行四边形,,,,,,、BE分别是、的平分线,,,,,,,.故选:B.【点睛】此题考查了平行四边形的性质以及等腰三角形的判定与性质注意证得与是等腰三角形是关键.9、D【解析】

根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABC中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;

只有选项D中,x取1个值,y有2个值与其对应,故y不是x的函数.

故选D.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.10、B【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A、C、D当x取值时,y有唯一的值对应,

故选B.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.二、填空题(每小题3分,共24分)11、【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】故答案为.【点睛】此题考查科学记数法,解题关键在于掌握一般形式.12、>【解析】

分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,∴y1=-3,y1=-6,∵-3>-6,∴y1>y1.13、【解析】

根据最简公分母的确定方法取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母进行解答.【详解】解:分式和的最简公分母是故答案为:.【点睛】本题考查的是最简公分母的概念,取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.14、2【解析】

根据题意可得:阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则2019个这样的正方形重叠部分即为(2019﹣1)个阴影部分的和,问题得解.【详解】由题意可得阴影部分面积等于正方形面积的,则一个阴影部分面积为:1.n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)×4=(n﹣1).所以这个2019个正方形重叠部分的面积和=×(2019﹣1)×4=2,故答案为:2.【点睛】本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.15、【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。16、1.2.【解析】

根据实物与影子的比相等可得小芳的影长.【详解】∵爸爸身高1.8m,小芳比他爸爸矮0.3m,

∴小芳高1.5m,

设小芳的影长为xm,

∴1.5:x=1.8:2.1,

解得x=1.2,

小芳的影长为1.2m.【点睛】本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.17、【解析】首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.解:如图所示,过E作EM⊥AC,已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),故选B.“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.18、10【解析】

本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.三、解答题(共66分)19、(1)当加热烧水,函数关系式为y=10x+20(0≤x≤8);当停止加热,得y与x的函数关系式为(1)y=100(8<x≤9);y=(9<x≤45);(2)从烧水开到泡茶需要等待3.25分钟.【解析】

(1)将D点的坐标代入反比例函数的一般形式利用待定系数法确定反比例函数的解析式,然后求得点C和点B的坐标,从而用待定系数法确定一次函数的解析式;(2)将y=80代入反比例函数的解析式,从而求得答案.【详解】(1)停止加热时,设y=,由题意得:50=解得:k=900,∴y=,当y=100时,解得:x=9,∴C点坐标为(9,100),∴B点坐标为(8,100),当加热烧水时,设y=ax+20,由题意得:100=8a+20,解得:a=10,∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);当停止加热,得y与x的函数关系式为(1)y=100(8<x≤9);y=(9<x≤45);(2)把y=80代入y=,得x=11.25,因此从烧水开到泡茶需要等待3.25分钟.考点:1、待定系数法;2、反比例函数的应用20、(1)证明见解析(2)四边形AFCD是菱形【解析】

(1)只要证明四边形ABDF是平行四边形即可;(2)结论:四边形AFCD是菱形.首先证明四边形ADCD是平行四边形,再证明DA=DC即可.【详解】(1),,四边形ABDF是平行四边形,;结论:四边形ADCF是菱形,理由如下:,,,,四边形ABDF是平行四边形,,,,四边形AFCD是平行四边形,,四边形AFCD是菱形.【点睛】本题考查了平行四边形的判定与性质、菱形的判定、直角三角形斜边中线等,熟练掌握相关的性质与定理是解题的关键.21、见解析【解析】

根据已知条件利用AAS来判定△ADF≌△CBE,从而得出AE=CF.【详解】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB.∴∠BCE=∠DAF.∵BE∥DF,∴∠AFD=∠CEB在△CDF和△ABE中,∠DFA=∴△ADF≌△CBE(AAS),∴CE=AF,∴AE=CF.【点睛】此题考查了平行四边形的性质及全等三角形的判定与性质,证明三角形全等是解决问题的关键.22、(1)证明见解析;(2)能,10;(3)t=或t=12,理由见解析.【解析】

(1)利用矩形的性质和直角三角形中所对应的直角边是斜边的一半进行作答;(2)证明平行四边形是菱形,分情况进行讨论,得到等式;(3)分别讨论若四边形AEOF是平行四边形时,则①∠OFE=90˚或②∠OEF=90˚,分情况讨论列等式.【详解】解:(1)∵四边形ABCD是矩形∴∠B=90˚在Rt△ABC中,∠ACB=90˚-∠BAC=30˚∵AE=2tCF=4t又∵Rt△COF中,∠ACB=30˚∴OF=CF=2t∴AE=OF(2)∵OF∥AB,AE=OF∴四边形AEOF是平行四边形当AE=AF时,平行四边形AEOF是菱形即:2t=60-4t解得:t=10∴当t=10时,平行四边形AEOF是菱形(3)①当∠OFE=90˚时,则有:EF∥BC∴∠AFE=∠ACB=30˚,∠AEF=∠B=90˚在Rt△AEF中,∠AFE=30˚∴AF=2AE即:60-4t=22t解得:t=②当∠OEF=90˚时,四边形AEOF是平行四边形则有:OE∥AC∴∠AFE=∠OEF=90˚在Rt△AEF中,∠BAC=60˚,∠AEF=30˚∴AE=2AF即:2t=2(60-4t)解得:t=12∴当t=或t=12时,△OEF为直角三角形.【点睛】本题主要考查矩形的性质、平行四边形的证明应用、菱形的证明、直角三角形中角的综合运用,根据题目中不同的信息列出不同的等式进行解答.23、(1)日销售量最大为120千克;(2);(3)第6天比第13天销售金额大.【解析】

(1)观察图(1),可直接得出第12天时,日销售量最大120千克;(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点的坐标,利用待定系数法直接求得函数解析式;(3)观察图(1),根据(2)求出的函数解析式,分别求出第6天和第13天的日销售量,再根据图(2),求出第6天和第13天的销售单价,求出第6天和第13天的销售金额,最后比较即可.【详解】(1)由图(1)可知,x=12时,日销售量最大,为120千克;(2)0≤x<12时,设y=k1x,∵函数图象经过点(12,120),∴12k1=120,解得k1=10,∴y=10x,12≤x≤20时,设y=k2x+b1,∵函数图象经过点(12,120),(20,0),∴,解得,∴y=﹣15x+300,综上所述,y与x的函数关系式为;(3)5≤x≤15时,设z=k3x+b2,∵函数图象经过点(5,32),(15,12),∴,解得,∴z=﹣2x+42,x=6时,y=60,z=﹣2×6+42=30,∴销售金额=60×30=1800元,x=13时,y=﹣15×13+300=105,z=﹣2×13+42=16,∴销售金额=105×16=1680元,∵1800>1680,∴第6天比第13天销售金额大.【点睛】本题考查了一次函数的应用,涉及了待定系数法,二元一次方程组的解法,弄清题意,准确识图是解题的关键.应注意自变量的取值范围.24、(1)见解析;(2)四边形为菱形,理由见解析;(3)45°【解析】

(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,再根据,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)证明:∵∴又∵∴又∵∴四边形为平行四边形∴(2)四边形为菱形,理由如下:∵为中点∴,由(1)得:∴四边形为平行四边形又∵∴为菱形(3)当∠A=45°时,四边形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即时,四边形为正方形【点睛】此题考查正方形的判定,平行四边形的判定与性质,菱形的判定,解题关键在于求出四边形ADEC是平行四边形25、(1);(2);(3)四边形ABCD为菱形,-2≤k≤2且k≠1.【解析】

(1)将k=1代入解析式中求出解析式,再令x=1,求出B点坐标进而求出OB的长,再在Rt△AOB中使用勾股定理即可求解;(2)①当k=3时,求出AB的解析式,进而求出点A的坐标,再根据对称性求出C点坐标,进而求出BC的解析式,再写出自变量的取值范围即可;②先证明OB=OD,OA=OC,且AC⊥BD,即可证明四边形ABCD为菱形,进而求出其面积.【详解】解:(1)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论