版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市宝坻区第二中学2024年八年级下册数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法正确的是()A.两个全等三角形是特殊的位似图形 B.两个相似三角形一定是位似图形C.位似图形的面积比与周长比都和相似比相等 D.位似图形不可能存在两个位似中心2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()A.20 B.25 C.35 D.273.正比例函数的图像上的点到两坐标轴的距离相等,则().A.1 B.-1 C.±1 D.±24.解分式方程,去分母得()A. B. C. D.5.已知点A(a+b,4)与点B(-2,a-b)关于原点对称,则a2-b2等于()A.8 B.-8 C.5 D.-56.如图,在△ABC中,∠ACB=90°,CE⊥AB,垂足为E,点D是边AB的中点,AB=20,S△CAD=30,则DE的长度是()A.6 B.8 C. D.97.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3 B.a=﹣1 C.a=1 D.a=28.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定9.若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣的图象上,则下列判断中正确的是()A.y1<y2<y3 B.y3<y1<y2 C.y2<y3<y1 D.y3<y2<y110.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm11.将直线向下平移个单位长度得到新直线,则的值为()A. B. C. D.12.如图,正比例函数y1=-2x的图像与反比例函数y2=kx的图像交于A、B两点.点C在x轴负半轴上,AC=AO,△A.-4 B.﹣8 C.4 D.8二、填空题(每题4分,共24分)13.若关于的一元二次方程的常数项为,则的值是__________.14.已知点A(2,a),B(3,b)在函数y=1﹣x的图象上,则a与b的大小关系是_____.15.若不等式组的解集是,则m的值是________.16.分解因式___________17.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.18.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.三、解答题(共78分)19.(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.20.(8分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数y=-6x的图象经过原点,函数y=-6x+5的图象经与y轴交于点(0,5),即它可以看作直线y=-6x向上平移5个单位长度而得到。比较一次函数解析式y=kx+bk≠0与正比例函数解析式y=kxk≠0,容易得出:一次函数y=kx+bk≠0的图象可由直线y=kx通过向上(或向下)平移b个单位得到(当b>0(结论应用)一次函数y=x-3的图象可以看作正比例函数的图象向平移个单位长度得到;(类比思考)如果将直线y=-6x的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A(0,0)和B(1,-6)向右平移5个单位得到点C(5,0)和D(6,-6),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+bk≠0,将C(5,0)和D(6,-6)代入得到:5k+b=06k+b=-6解得k=-6b=30,所以直线CD的解析式为:y=-6x+30;①将直线y=-6x向左平移5个单位长度,则平移后得到的直线解析式为.②若先将直线y=-6x向左平移4个单位长度后,再向上平移5个单位长度,得到直线l,则直线l的解析式为(拓展应用)已知直线l:y=2x+3与直线关于x轴对称,求直线的解析式.21.(8分)如图,在平行四边形中,是边上的中点,连接,并延长交的延长线于点.证明:.22.(10分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?23.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.24.(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.25.(12分)化简求值:,其中x=1.26.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)求该函数图象与坐标轴围成的三角形的面积.(3)判断点C(2,2)是在直线AB的上方(右边)还是下方(左边).
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据位似图形的定义与性质对各个选项进行判断即可.【详解】A.全等三角形是特殊的相似三角形,其相似比为1,但是两个全等三角形不一定对应顶点的连线相交于一点,对应边互相平行,故本选项错误,
B.两个位似三角形的对应顶点的连线一定相交于一点,对应边一定互相平行,而相似三角形只要求形状相同、大小不等,并没有位置上的特殊要求,故本选项错误,C.位似图形的面积的比等于相似比的平方,周长的比等于相似比,故本选项错误,
D.两个位似图形不仅是相似图形,而且对应顶点的连线相交于一点,这一点是唯一的,
故本选项正确.故选D.【点睛】本题主要考查位似图形的定义与性质,1.位似图形对应线段的比等于相似比;2.位似图形的对应角都相等;3.位似图形对应点连线的交点是位似中心;4.位似图形面积的比等于相似比的平方;5.位似图形高、周长的比都等于相似比;6.位似图形对应边互相平行或在同一直线上.2、D【解析】
第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=个,进一步求得第(6)个图形中面积为1的正方形的个数即可.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。故选:D【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律3、C【解析】
根据题意,正比例函数图象上的点的坐标可设为(a,a)或(a,-a),然后把它们分别代入y=kx可计算出对应的k的值,从而可确定正比例函数解析式.【详解】∵正比例函数图象上的点到两坐标轴的距离相等,∴正比例函数图象上的点的坐标可设为(a,a)或(a,-a),∴k•a=a或k•a=-a∴k=1或-1,故选C.【点睛】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx,然后把一组对应值代入求出k,从而得到正比例函数解析式.4、A【解析】
分式方程两边乘以(x-1)去分母即可得到结果.【详解】解:方程两边乘以(x-1)去分母得:.
故选:A.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5、B【解析】
直接利用关于原点对称点的性质得出a+b,a-b的值,进而得出答案.【详解】∵点A(a+b,4)与点B(-2,a-b)关于原点对称,,
∴a2-b2=(a+b)(a-b)=2×(-4)=-1.
故选B.【点睛】考查了关于原点对称点的性质,正确应用平方差公式是解题关键.6、B【解析】
根据直角三角形斜边中线的性质求得CD,根据三角形面积求得CE,然后根据勾股定理即可求得DE.【详解】解:∵在△ABC中,∠ACB=90°,点D是边AB的中点,AB=20,
∴CD=AD=BD=10,
∵S△CAD=30,CE⊥AB,垂足为E,
∴S△CAD=AD•CE=30
∴CE=6,
∴DE=故选B.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,解题的关键是掌握这个性质的运用.7、C【解析】
把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【详解】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选C.【点睛】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.8、B【解析】
从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC===4(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.9、B【解析】
先根据反比例函数中,k2+1>0,可知-(k2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数的,-(k2+1)<0,∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y随x的增大而增大.∵-2<-1<0,∴点、位于第二象限,且在第二象限内y随x的增大而增大,∴y2>y1>0,又∵1>0,∴点位于第四象限,∴y3<0,∴y3<y1<y2.故选择B.【点睛】本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.10、C【解析】
连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.【详解】连接、,过作于∵在中,,,∴,∴在中,∴在中,∴,∵的垂直平分线∴同理∵∴∴在中,∴同理∴故选:C.【点睛】本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.11、D【解析】
直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,解得n=1.故选:D.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12、B【解析】
根据等腰三角形的性质及反比例函数k的几何意义即可求解.【详解】过点A作AE⊥x轴,∵AC=AO,∴CE=EO,∴S△ACO=2S△ACE∵△ACO的面积为8.∴k=8,∵反比例函数过二四象限,∴k=-8故选B【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.二、填空题(每题4分,共24分)13、【解析】
先找到一元二次方程的常数项,得到关于m的方程,解出方程之后检验最后得到答案即可【详解】关于的一元二次方程的常数项为,故有,解得m=4或m=-1,又因为原方程是关于x的一元二次方程,故m+1≠0,m≠1综上,m=4,故填4【点睛】本题考查一元二次方程的概念,解出m之后要重点注意二次项系数不能为0,舍去一个m的值14、a>b.【解析】
分别把点A(2,a),B(3,b)代入函数y=1-x,求出a、b的值,并比较出其大小即可.【详解】∵点A(2,a),B(3,b)在函数y=1−x的图象上,∴a=−1,b=−2,∵−1>−2,∴a>b.故答案为:a>b.【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于把A,B代入方程.15、2【解析】
分别求出每个不等式的解集,取共同部分,即可得到m的值.【详解】解:,解得:,∵不等式组的解集为:,∴;故答案为:2.【点睛】本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.16、【解析】
原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17、1.【解析】
根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.【详解】∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF=DO==1,故答案为:1.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,三角形的中位线等知识.矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.18、41【解析】
证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.【详解】在△ABN和△ADN中,,∴△ABN≌△ADN,∴BN=DN,AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,故答案为:41.【点睛】本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.三、解答题(共78分)19、(1)作图见解析;(2)作图见解析.【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】(1)如图所示:△A1B1C1是所求的三角形.(2)如图所示:△A2B2C1为所求作的三角形.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.20、【结论应用】y=x,下,1;【类比思考】①y=-6x-10;②y=-6x-3;【拓展应用】y=-2x-1.【解析】【结论应用】根据题目材料中给出的结论即可求解;【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;【拓展应用】在直线l:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.【详解】解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
故答案为y=x,下,1;
【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
将C(-5,0)和D(-4,-6)代入得到:-5k+b=解得k=-6b=-30,
所以直线CD的解析式为:y=-6x-10.
故答案为y=-6x-10;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(-4,5)和D-4k+b解得k=-6b=-19
所以直线l的解析式为:y=-6x-3.
故答案为y=-6x-3;
【拓展应用】在直线l:y=2x+1上任意取两点A(0,1)和B(1,5),
则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD设直线CD的解析式为:y=kx+b(k≠0),
将C(0,-1)或D(1,-5)代入得到:b解得k=-2b=-3
所以直线l【点睛】本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.21、见解析【解析】
由在平行四边形中,是边上的中点,易证得,从而证得.【详解】证明:四边形是平行四边形,,则AB∥CF,,是边上的中点,,在和中,,,.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.22、(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元【解析】
(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可.(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.【详解】(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:,解得:.答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得:,解得:.∵a为整数,∴a=99,100,101,则电脑依次买:297,296,295.∴该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,则W=4000z+15000(396﹣z)=﹣11000z+5940000,∵W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元.23、见解析【解析】试题分析:(1)根据题意补全图形,如图所示;
(2)由旋转的性质得到为直角,由EF与CD平行,得到为直角,利用SAS得到与全等,利用全等三角形对应角相等即可得证.试题解析:(1)补全图形,如图所示;(2)由旋转的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024路面铺装工程测量与放样服务合同
- 2025年度智慧社区物业管理服务合同规范文本3篇
- 2025年度殡葬墓地销售及售后服务协议书3篇
- 2025年度数据中心建设承包合同参考范文4篇
- 2025年度智能车位共享平台代理销售合同模板4篇
- 2024栽树合同范本:生态湿地栽树项目合同3篇
- 2025年度智能储藏室资产交易合同4篇
- 2025年度智能化仓储储藏室租赁及运营管理协议范本4篇
- 2025年度医疗设备代工制造合同4篇
- 2025年度个人车辆购置税连带担保协议4篇
- GB/T 11072-1989锑化铟多晶、单晶及切割片
- GB 15831-2006钢管脚手架扣件
- 有机化学机理题(福山)
- 医学会自律规范
- 商务沟通第二版第4章书面沟通
- 950项机电安装施工工艺标准合集(含管线套管、支吊架、风口安装)
- 微生物学与免疫学-11免疫分子课件
- 《动物遗传育种学》动物医学全套教学课件
- 弱电工程自检报告
- 民法案例分析教程(第五版)完整版课件全套ppt教学教程最全电子教案
- 7.6用锐角三角函数解决问题 (2)
评论
0/150
提交评论