2024届广东省肇庆端州区七校联考八年级数学第二学期期末联考试题含解析_第1页
2024届广东省肇庆端州区七校联考八年级数学第二学期期末联考试题含解析_第2页
2024届广东省肇庆端州区七校联考八年级数学第二学期期末联考试题含解析_第3页
2024届广东省肇庆端州区七校联考八年级数学第二学期期末联考试题含解析_第4页
2024届广东省肇庆端州区七校联考八年级数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省肇庆端州区七校联考八年级数学第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件为必然事件的是()A.某运动员投篮时连续3次全中 B.抛掷一块石块,石块终将下落C.今天购买一张彩票,中大奖 D.明天我市主城区最高气温为38℃2.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角3.下列各组数中不能作为直角三角形的三边长的是()A.7,24,25 B.,4,5 C.,1, D.40,50,604.如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为()A.12cm2 B.24cm2 C.48cm2 D.96cm25.如图,直线经过第二、三、四象限,的解析式是,则的取值范围在数轴上表示为().A. B.C. D.6.把代数式因式分解,结果正确的是()A. B. C. D.7.以下列长度为边长的三角形是直角三角形的是()A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,98.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB//DCC.BO=DO D.∠ABC=∠CDA9.如图,在▱ABCD中,下列结论不一定正确的是()A.∠1=∠2 B.∠1=∠3 C.AB=CD D.∠BAD=∠BCD10.如图,□ABCD中,AB=6,E是BC边的中点,F为CD边上一点,DF=4.8,∠DFA=2∠BAE,则AF的长为()A.4.8 B.6 C.7.2 D.10.811.如图,点、、、分别是四边形边、、、的中点,则下列说法:①若,则四边形为矩形;②若,则四边形为菱形;③若四边形是平行四边形,则与互相垂直平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.412.如图,在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为().A.6 B.9 C.10 D.12二、填空题(每题4分,共24分)13.某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.14.如图,在中,,,是的角平分线,过点作于点,若,则___.15.在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.16.如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是_____.17.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.18.已知锐角,且sin=cos35°,则=______度.三、解答题(共78分)19.(8分)计算:(-)(+)--|-3|20.(8分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.(1)求证:;(2)求证:;(3)当时,求的长.21.(8分)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.22.(10分)已知:如图,□ABCD中,延长BA至点E,使BE=AD,连结CE,求证:CE平分∠BCD.23.(10分)如图,在梯形中中,,是的中点,,,,,点是边上一动点,设的长为.(1)当的值为多少时,以点为顶点的三角形为直角三角形;(2)当的值为多少时,以点为顶点的四边形为平行四边形;(3)点在边上运动的过程中,以为顶点的四边形能否构成菱形?试说明理由.24.(10分)如图所示,△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请写出三角形ABC平移的过程;(2)分别写出点A′,B′,C′的坐标.(3)求△A′B′C′的面积.25.(12分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.26.八年级下册教材第69页习题14:四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、某运动员投篮时连续3次全中,是随机事件;B、抛掷一块石块,石块终将下落,是必然事件;C、今天购买一张彩票,中大奖,是随机事件;D、明天我市主城区最高气温为38℃,是随机事件;故选择:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【解析】

根据菱形的对角线的特征,内角的特征,对称性来判断即可.【详解】A.矩形的对角线平分、相等,故A选项错误;B.菱形的对角线平分、相等,故B选项正确;C.矩形的对角互补,故C选项错误;D.矩形的四个角都是直角,故D选项错误;故选:B.【点睛】此题考查菱形的性质,解题关键在于掌握菱形的性质3、D【解析】

根据勾股定理的逆定理依次计算各项后即可解答.【详解】选项A,∵72+242=252,∴7,24,25能构成直角三角形;选项B,∵42+52=()2,∴,4,5能构成直角三角形;选项C,∵12+()2=()2,∴,1,能构成直角三角形;选项D,∵402+502≠602,∴40,50,60不能构成直角三角形.故选D.【点睛】本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理是解决问题的关键.4、B【解析】

设AC交BD于O.根据勾股定理求出OA,再根据菱形的面积公式计算即可.【详解】设AC交BD于O.∵四边形ABCD是菱形,∴AC⊥BD,∵AD=5cm,OD=OB=12BD=3cm∴OA=52-∴AC=2OA=8,∴S菱形ABCD=12×AC×BD=24故选B.【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、C【解析】

根据一次函数图象与系数的关系得到m-2<1且n<1,解得m<2,然后根据数轴表示不等式的方法进行判断.【详解】∵直线y=(m-2)x+n经过第二、三、四象限,∴m-2<1且n<1,∴m<2且n<1.故选C.【点睛】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠1)是一条直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(1,b).也考查了在数轴上表示不等式的解集.6、C【解析】

根据提公因式,平方差公式,可得答案.【详解】解:==,故选:C.【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.7、C【解析】

利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A、因为52+62≠72,所以三条线段不能组成直角三角形;B、因为72+82≠92,所以三条线段不能组成直角三角形;C、因为62+82=102,所以三条线段能组成直角三角形;D、因为52+72≠92,所以三条线段不能组成直角三角形;故选:C.【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.8、A【解析】

根据平行四边形的性质即可判断.平行四边形的对边平行且相等,对角相等,对角线互相平分。【详解】解:∵四边形ABCD是平行四边形,

∴AB∥CD,OB=OD,∠ABC=∠ADC,

∴B、C、D正确,A错误。

故选:A.【点睛】本题考查平行四边形的性质、记住平行四边形的性质是解题的关键,属于中考基础题.9、B【解析】

由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.【详解】∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∠BAD=∠BCD∴∠1=∠1故选B.【点睛】本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.10、C【解析】

在AF上截取AG=AB,连接EG,CG.利用全等三角形的判定定理SAS证得△AEG≌△AEB,由全等三角形的对应角相等、对应边相等知EG=BE,∠B=∠AGE;然后由中点E的性质平行线的性质以及等腰三角形的判定与性质求得CF=FG;最后根据线段间的和差关系证得结论.【详解】在AF上截取AG=AB,连接EG,CG.∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=6,∴∠DFA=∠BAF,∵∠DFA=1∠BAE,∴∠FAE=∠BAE,在△BAE和△GAE中,,∴△BAE≌△GAE(SAS).∴EG=BE,∠B=∠AGE;又∵E为BC中点,∴CE=BE.∴EG=EC,∴∠EGC=∠ECG;∵AB∥CD,∴∠B+∠BCD=180°.又∵∠AGE+∠EGF=180°,∠AGE=∠B,∴∠BCF=∠EGF;又∵∠EGC=∠ECG,∴∠FGC=∠FCG,∴FG=FC;∵DF=4.8,∴CF=CD-DF=6-4.8=1.1,又∵AG=AB,∴AF=AG+GF=AB+FC=CD+FC=6+1.1=7.1.故选C.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质.利用平行四边形的性质,可以证角相等、线段相等.其关键是根据所要证明的全等三角形,选择需要的边、角相等条件.11、A【解析】

根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形、菱形、正方形的判定定理判断即可.【详解】解:∵E、F分别是边AB、BC的中点,

∴EF∥AC,EF=AC,

同理可知,HG∥AC,HG=AC,

∴EF∥HG,EF=HG,

∴四边形EFGH是平行四边形,若AC=BD,则四边形EFGH是菱形,故①说法错误;

若AC⊥BD,则四边形EFGH是矩形,故②说法错误;若四边形是平行四边形,AC与BD不一定互相垂直平分,故③说法错误;若四边形是正方形,AC与BD互相垂直且相等,故④说法正确;故选:A.【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,掌握三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理是解题的关键.12、D【解析】

根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为21,∴CD=6,∴BC=2CD=1.故选D.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.二、填空题(每题4分,共24分)13、1【解析】

由题意直接根据频数=频率×总数,进而可得答案.【详解】解:由题意可得成绩在81~90这个分数段的同学有48×0.25=1(名).故答案为:1.【点睛】本题主要考查频数和频率,解题的关键是掌握频率等于频数除以总数进行分析计算.14、【解析】

根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式计算即可得解.【详解】∵∠ACB=90°,CA=CB,∴∠B=45°,∵AD平分∠CAB,∠ACB=90°,DE⊥AB,∴DE=CD=1,∠BDE=45°,∴BE=DE=1,在Rt△BDE中,根据勾股定理得,BD=.故答案为:.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,熟记性质是解题的关键.15、AB//CD等【解析】

根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.16、(2,5).【解析】

连接AB,BC,运用平行四边形性质,可知AD∥BC,所以点D的纵坐标是5,再跟BC间的距离即可推导出点D的纵坐标.【详解】解:由平行四边形的性质,可知D点的纵坐标一定是5;又由C点相对于B点横坐标移动了1﹣(﹣3)=4,故可得点D横坐标为﹣2+4=2,即顶点D的坐标(2,5).故答案为(2,5).【点睛】本题主要是对平行四边形的性质与点的坐标的表示等知识的直接考查,同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求不高.17、或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=,此时min{2,-x+3,5x}=min{2,,}=2,成立;②2x+1=-x+3,x=,此时min{2,-x+3,5x}=min{2,,}=2,不成立;③2x+1=5x,x=,此时min{2,-x+3,5x}=min{2,,}=,成立,∴x=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.18、1【解析】

对于任意锐角A,有sinA=cos(90°-A),可得结论.【详解】解:∵sinα=cos35°,∴α=90°-35°=1°,故答案为:1.【点睛】此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.三、解答题(共78分)19、-【解析】分析:先进行二次根式的乘法法则运算,化简二次根式和去绝对值,然后化简后合并即可.详解:原式=5-2-2-(3-)=3-2-3+=-.点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、(1)证明见解析;(2)证明见解析;(3)PH=.【解析】

(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.(3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.【详解】(1)证明:∵PE=BE,∴∠EPB=∠EBP,又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠BPH=∠PBC.又∵四边形ABCD为正方形∴AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:过B作BQ⊥PH,垂足为Q,由(1)知,∠APB=∠BPH,在△ABP与△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,BA=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,∴△BCH和△BQH是直角三角形,在Rt△BCH与Rt△BQH中,,∴Rt△BCH≌Rt△BQH(HL),∴CH=QH,∴AP+HC=PH.(3)解:∵AP=2,∴PD=AD-AP=8-2=6,设AE=x,则EP=8-x,在Rt△AEP中,AE2+AP2=PE2,即x2+22=(8-x)2,解得:x=,∵∠A=∠D=∠ABC=90°,∴∠AEP+∠APE=90°,由折叠的性质可得:∠EPG=∠ABC=90°,∴∠APE+∠DPH=90°,∴∠AEP=∠DPH,∴△DPH∽△AEP,∴,∴,解得:DH=.∴PH=【点睛】此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.21、见解析【解析】分析:利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.详解:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE.∵DF⊥AE,∴∠AFD=∠B=90°.在△ABE和△DFA中,∵∴△ABE≌△DFA,∴AB=DF.点睛:本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.22、见解析【解析】分析:由平行四边形的性质得出AB∥CD,AD=BC,由平行线的性质得出∠E=∠DCE,由已知条件得出BE=BC,由等腰三角形的性质得出∠E=∠BCE,得出∠DCE=∠BCE即可.详解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,∴∠E=∠DCE,∵BE=AD,∴BE=BC,∴∠E=∠BCE,∴∠DCE=∠BCE,即CE平分∠BCD.点睛:本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证出∠E=∠BCE是解决问题的关键.23、(1)当的值为3或8时,以点为顶点的三角形为直角三角形;(2)当的值为1或11时,以点为顶点的四边形为平行四边形;(3)以点为顶点的四边形能构成菱形,理由详见解析.【解析】

(1)过AD作于,于,当时,分情况讨论,求出即可;(2)分为两种情况,画出图形,根据平行四边形的性质推出即可;(3)化成图形,根据菱形的性质和判定求出BP即可.【详解】解(1)如图,分别过AD作于,于∴而∴∴若以为顶点的三角形为直角三角形,则或,(在图中不存在)当时∴与重合∴当时∴与重合∴故当的值为3或8时,以点为顶点的三角形为直角三角形;(2)若以点为顶点的四边形为平行四边形,那么,有两种情况:①当在的左边,∵是的中点,∴∴②当在的右边,故当的值为1或11时,以点为顶点的四边形为平行四边形;(3)由(2)知,当时,以点为顶点的四边形能构成菱形当时,以点为顶点的四边形是平行四边形,∴,过作于,∵,,则,∴.∴,∴故此时是菱形即以点为顶点的四边形能构成菱形.【点睛】此题考查直角三角形的性质,平行四边形的判定,解题关键在于作辅助线和利用勾股定理进行计算.24、(1)见解析;(2)A′(2,3)B′(1,0)C′(5,1);(3)5.5【解析】

(1)由x1+6-x1=6,y1+4-y1=4得平移规律;(2)根据(1)中的平移规律即可得到点A′,B′,C′的坐标;(3)把△A′B′C′补形为一个长方形后,利用面积的和差关系求△A′B′C′的面积.【详解】(1)△ABC先向右平移6个单位,再向上平移4个单位得到△A′B′C′或△ABC先向上平移4个单位,再向右平移6个单位得到△A′B′C′(2)A′(2,3)B′(1,0)C′(5,1);(3)S△A′B′C′=4×3−×3×1−×3×2−×1×4=12−1.5−3−2=5.5.25、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】

试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论