




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市荣昌清流镇民族中学2024届八年级下册数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,72.如图,将三个同样的正方形的一个顶点重合放置,如果°,°时,那么的度数是(
)A.15° B.25° C.30° D.45°3.下列图象中,不能表示是的函数的是()A. B. C. D.4.函数的自变量满足≤≤2时,函数值y满足≤≤1,则这个函数肯定不是()A. B. C. D.5.甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手
甲
乙
丙
丁
方差
0.023
0.018
0.020
0.021
则这10次跳绳中,这四个人发挥最稳定的是()A.甲 B.乙 C.丙 D.丁6.如图,函数与的图象交于点,那么关于x,y的方程组的解是A. B. C. D.7.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A.平均数 B.中位数 C.方差 D.众数8.若线段AB=2,且点C是AB的黄金分割点,则BC等于()A.5+1 B.3-5 C.5+1或3-59.以下列各组数为三角形的边长,能构成直角三角形的是()A.1,2,3 B.1,1, C.2,4,5 D.6,7,810.直线y=kx+b与y=mx在同一平面直角坐标系中的图象如图所示,则关于x的不等式kx+b>mx的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣1 D.x<﹣111.如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是()A.①②③ B.①③④ C.②③④ D.①②12.若分式无意义,则()A. B. C. D.二、填空题(每题4分,共24分)13.已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.14.已知,则__________.15.点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为.16.一个正多边形的每个内角度数均为135°,则它的边数为____.17.已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为____。18.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b<0的解集是___.三、解答题(共78分)19.(8分)小明八年级下学期的数学成绩如下表所示:(1)计算小明该学期的平时平均成绩.(2)如果按平时占20%,期中占30%,期末占50%计算学期的总评成绩.请计算出小明该学期的总评成绩.20.(8分)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.21.(8分)近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:初一年级8858449071889563709081928484953190857685初二年级7582858576876993638490856485919668975788(整理数据)按如下分段整理样本数据:分段年级0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100初一年级a137b初二年级14285(分析数据)对样本数据边行如下统计:统计量年级平均数中位数众数方差初一年级78c90284.6初二年级8185d126.4(得出结论)(1)根据统计,表格中a、b、c、d的值分别是、、、.(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有人.(3)根据以上数据,你认为(填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).22.(10分)如图,已知等腰Rt△ABC中,AB=AC,∠BAC=,点A、B分别在x轴和y轴上,点C的坐标为(6,2).(1)如图1,求A点坐标;(2)如图2,延长CA至点D,使得AD=AC,连接BD,线段BD交x轴于点E,问:在x轴上是否存在点M,使得△BDM的面积等于△ABO的面积,若存在,求点M的坐标;若不存在,请说明理由.23.(10分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?24.(10分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由.25.(12分)已知一次函数图象经过和两点(1)求此一次函数的解析式;(2)若点在函数图象上,求的值.26.如图,在平面直角坐标系中,矩形的顶点坐标为,点在边上从点运动到点,以为边作正方形,连,在点运动过程中,请探究以下问题:(1)的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若为等腰三角形,求此时正方形的边长.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为=6.5,众数是7,故选C.【点睛】本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.2、A【解析】
根据∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,
∠EOC=90°-∠1=90°-45°=45°,
又∵∠2=∠BOD+∠EOC-∠BOE,
∴∠2=60°+45°-90°=15°.
故选:A.【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE这一关系是解题的关键.3、D【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,可得答案.【详解】A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A不符合题意;
B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不符合题意;
C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不符合题意;
D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D符合题意;
故选:D.【点睛】考查了函数的定义,利用了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、A【解析】
把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.【详解】:A、把x=代入可得y=4,把x=2代入可得y=1,故A正确;B、把x=代入可得y=,把x=2代入可得y=1,故B错误;C、把x=代入可得y=,把x=2代入可得y=1,故C错误;D、把x=代入可得y=16,把x=2代入可得y=1,故D错误.故选A.【点睛】此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.5、B【解析】试题分析:方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.由S乙2<S丙2<S丁2<S甲2,∴这10次跳绳中,这四个人发挥最稳定的是乙.故选B.考点:方差,算术平均数.6、A【解析】
利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:根据题意可得方程组的解是.故选:A.【点睛】本题考查了一次函数与二元一次方程组:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.7、D【解析】
根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。属于基础题.8、D【解析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.【详解】解:当AC<BC时,BC=5-12AB=当AC>BC时,BC=2-(5-1)=故选:D.【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(5-19、B【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠32,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、22+42≠52,故不是直角三角形,故此选项错误;D、62+72≠82,故不是直角三角形,故此选项错误.故选B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10、D【解析】
根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的上面,即可得出不等式kx+b>mx的解集.【详解】解:由函数图象可知,关于x的不等式kx+b>mx的解集是x<−1.故选:D.【点睛】本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的“高低”(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.11、A【解析】
连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.【详解】连接OO′,如图,
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,
∴BO′=BO=8,∠OBO′=60°,
∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;
∵△BOO′为等边三角形,
∴OO′=OB=8,所以②正确;
∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,
∴AO′=OC=10,
在△AOO′中,∵OA=6,OO′=8,AO′=10,
∴OA2+OO′2=AO′2,
∴△AOO′为直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;,故④错误,故选:A.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.12、D【解析】
根据分母等于零列式求解即可.【详解】由题意得x-1=0,∴.故选D.【点睛】本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.二、填空题(每题4分,共24分)13、1【解析】
将代入原式=(x-3-2)2=(x-1)2计算可得.【详解】当时,原式,故答案为1.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.14、1【解析】
直接利用二次根式非负性得出a,b的值,进而得出答案.【详解】∵,∴a=−1,b=1,∴−1+1=1.故答案为:1.【点睛】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15、12或4【解析】试题分析:当图形处于同一个象限时,则k=8+4=12;当图形不在同一个象限时,则k=8-4=4.考点:反比例函数的性质16、8【解析】
试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.【详解】设该正多边形的边数为n由题意得:=135°解得:n=8故答案为8.【点睛】考点:多边形的内角和17、4.8cm.【解析】
根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【详解】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10(cm),设斜边上的高为h,则直角三角形的面积为×6×8=×10h,解得:h=4.8cm,这个直角三角形斜边上的高为4.8cm.故答案为:4.8cm.【点睛】此题考查勾股定理,解题关键在于列出方程.18、x<−2.【解析】
由图象可知kx+b=0的解为x=-2,所以kx+b<0的解集也可观察出来.【详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−2,0),并且函数值y随x的增大而增大,因而不等式kx+b<0的解集是x<−2.故答案为:x<−2.【点睛】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.三、解答题(共78分)19、(1)15;(2)16.1.【解析】
(1)对各单元成绩求和后,再除以单元数,即可得到平时的平均成绩;(2)用加权平均数的计算方法计算即可.【详解】(1)由表可知,小明平时的平均成绩为:故小明平时的平均成绩为15.(2)由题知,小明该学期的总成绩为:故小明该学习的总成绩为16.1.【点睛】本题考查了平均数,加权平均数的计算,掌握相关计算是解题的关键.20、(1);(2)见解析;(3)见解析;(4)见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB===.故答案为.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.∵BC=2,∴=,∴矩形BCDE是黄金矩形.∵==,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH=﹣1,宽HE=3﹣.点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.21、(1)3、6、84.5、85;(2)490;(3)“初二”,理由详见解析.【解析】
(1)根据给出的统计表求出a、b,根据中位数和众数的概念求出c、d;(2)用样本估计总体,得到答案;(3)根据平均数的性质解答.【详解】解:(1)由统计表中的数据可知,a=3,b=6,c==84.5,d=85,故答案为:3;6;84.5;85;(2)初一成绩90分以上(含90分)的人数共有:800×=240(人),初二成绩90分以上(含90分)的人数共有1000×=250(人),240+250=490(人),故答案为:490;(3)“初二”学生的体育整体水平较高,原因是:初二年级的平均数大于初一年级的平均数,故答案为:“初二”.【点睛】本题考查了数据的统计与分析,熟知平均数、中位数、众数、方差等的实际意义是解题的关键.22、(1)A(2,0);(2)(0,0)(-,0).【解析】
(1)过C作CH⊥x轴于H,则CH=2,根据题意可证△ADB≌△CAH,所以OA=CH,又因点A在x轴上,所以点A的坐标为(2,0).(2)根据题意先求出点D的坐标为(2,-2),再根据△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积,列出方程解出M点的坐标.【详解】(1)过C作CH⊥x轴于H,则△ADB≌△CAH,又C(6,2),所以,OA=2,即A(2,0)(2)如图2所示,设点M的坐标为(x,0),∵AD=AC,∴点A是CD的中点,∵C(6,2),A(2,0)∴D(-2,-2).设直线BD的解析式为y=kx+b,则解得:∴直线BD的解析式为,令y=0,解得x=.∴E的坐标为(,0)∵△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积∴解得:或x=0.∴点M的坐标(0,0)或(-,0)..【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质、平面直角坐标系中坐标轴的坐标特点、中点坐标公式、一次函数解析式及与坐标轴交点坐标的求法,数轴上两点之间的距离公式,三角形的面积公式等知识,综合性较强,能综合运用知识解题是解题的关键.23、(1)y甲=1050+15x(x≥10);y乙=13.5x+1080(x≥10);(2)见解析.【解析】
(1)在甲店购买的付款数=10个足球的总价+(x﹣10)件对抗训练背心的总价,把相关数值代入化简即可;在乙店购买的付款数=10个足球的总价的总价×0.9+x件对抗训练背心×0.9;(2)分别根据y甲=y乙时,y甲>y乙时,y甲<y乙时列出对应式子求解即可.【详解】(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);(2)y甲=y乙时,1050+15x=13.5x+1080,解得:x=20,即当x=20时,到两店一样合算;y甲>y乙时,1050+15x>13.5x+1080,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医药企业研发外包(CRO)模式下的药物研发合作与协同创新报告
- 工业互联网平台量子密钥分发技术政策法规解读报告001
- 沉浸式戏剧市场推广模式2025年创新策略研究报告001
- 2025年医药流通企业供应链优化与成本控制策略深度解析报告
- 3D打印技术在制造业大规模生产中的应用前景与挑战研究报告
- 快时尚品牌在时尚零售行业模式变革中的产品创新路径报告
- 爆破安全试题及答案
- 2025届浙江省湖州市名校英语七下期末达标检测试题含答案
- 广东省广州黄埔区五校联考2025届八下英语期中综合测试模拟试题含答案
- 安全知识试题六及答案
- 人教版2025年八年级英语下学期期末总复习(专题训练)专题01单项选择【期末易错100题】(人教版)(学生版+解析)
- 企业财务内控管理制度
- 2025以色列与伊朗冲突全面解析课件
- 2025年农产品质量安全追溯体系在食品安全监管中的应用与改进报告
- 做账实操-渔业行业的账务处理分录实例
- (完整版)金融企业会计练习题
- 新教育 考试试题及答案
- 2025至2030中国心理保健行业发展趋势分析与未来投资战略咨询研究报告
- 儿童活动抓鱼活动方案
- 天津2025年中国医学科学院放射医学研究所第一批招聘笔试历年参考题库附带答案详解
- 2025甘肃省农垦集团有限责任公司招聘生产技术人员145人笔试参考题库附带答案详解析
评论
0/150
提交评论