版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市巫山县2024届八年级下册数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,l1//l2,▱ABCD的顶点A在l1上,BC交l2于点E,若A.100∘ B.90∘ C.802.一同学将方程化成了的形式,则m、n的值应为()A.m=1.n=7 B.m=﹣1,n=7 C.m=﹣1,n=1 D.m=1,n=﹣73.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为()A.6 B.8 C.4 D.5.下列说法:(1)8的立方根是.(2)的平方根是.(3)负数没有立方根.(4)正数有两个平方根,它们互为相反数.其中错误的有()A.4个 B.3个 C.2个 D.1个6.在长度为1的线段上找到两个黄金分割点P,Q,则PQ=()A. B. C. D.7.下图入口处进入,最后到达的是()A.甲 B.乙 C.丙 D.丁8.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4,过点C作CE⊥BD交BD的延长线于E,则CE的长为()A. B.2 C.3 D.29.在矩形中,是的中点,,垂足为,则用的代数式表示的长为()A. B. C. D.10.(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH二、填空题(每小题3分,共24分)11.某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.12.如果等腰直角三角形的一条腰长为1,则它底边的长=________.13.如图,已知一次函数的图象为直线,则关于x的方程的解______.14.计算=________________.15.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.16.若是的小数部分,则的值是______.17.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.18.如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.三、解答题(共66分)19.(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。20.(6分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.21.(6分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)22.(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
A型
B型
价格(万元/台)
a
b
处理污水量(吨/月)
220
180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.23.(8分)先化简,再求值:(+)÷,其中x=﹣1.24.(8分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.25.(10分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。求证:DE=BF26.(10分)如图所示,有一长方形的空地,长为米,宽为米,建筑商把它分成甲、乙、丙三部分,甲和乙为正方形.现计划甲建筑成住宅区,乙建成商场丙开辟成公园.请用含的代数式表示正方形乙的边长;;若丙地的面积为平方米,请求出的值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.【详解】解:∵四边形ABCD是平行四边形,
∴∠BAD=∠C=100°,AD∥BC,
∴∠2=∠ADE,
∵l1∥l2,
∴∠ADE+∠BAD+∠1=180°,
∴∠1+∠2=180°-∠BAD=80°;
故选:C.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.2、B【解析】
先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.【详解】解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,∴,解得:故选:B.【点睛】此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.3、D【解析】
直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.4、A【解析】
根据三角形中位线的性质得出DE的长度,然后根据EF=DF,DE+EF=DF求出DF的长度.【详解】解:∵D、E分别为AB和AC的中点,∴DE=BC=4,∵EF=DF,DE+EF=DF,∴DF=6,∴选A.【点睛】本题主要考查的是三角形中位线的性质,属于基础题型.理解中位线的性质是解决这个问题的关键.5、B【解析】
(1)(3)根据立方根的定义即可判定;(2)根据算术平方根和平方根的定义即可判定;(4)根据平方根的定义即可判定.【详解】(1)8的立方根是2,原来的说法错误;(2)=16,16的平方根是±4,原来的说法错误;(3)负数有立方根,原来的说法错误;(4)正数有两个平方根,它们互为相反数是正确的.错误的有3个.故选B.【点睛】此题考查了相反数,立方根和算术平方根、平方根的性质,要掌握一些特殊数字的特殊性质,如1,-1和1.相反数的定义:只有符号相反的两个数叫互为相反数;立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1.算术平方根是非负数.6、C【解析】【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.【详解】:根据黄金分割点的概念,可知AP=BQ=,则PQ=AP+BQ-AB=故选:C【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.7、C【解析】
根据平行四边形的性质和对角线的定义对命题进行判断即可.【详解】等腰梯形也满足此条件,可知该命题不是真命题;根据平行四边形的判定方法,可知该命题是真命题;根据题意最后最后结果为丙.故选C.【点睛】本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.8、B【解析】
延长CE与BA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质可得BD=CF,再证明△BEF≌△BCE可得CE=EF,进而可得CE=BD,即可得出结果.【详解】证明:延长CE与BA延长线交于点F,∵∠BAC=90°,CE⊥BD,∴∠BAC=∠DEC,∵∠ADB=∠CDE,∴∠ABD=∠DCE,在△BAD和△CAF中,,∴△BAD≌△CAF(ASA),∴BD=CF,∵BD平分∠ABC,CE⊥DB,∴∠FBE=∠CBE,在△BEF和△BCE中,,∴△BEF≌△BCE(AAS),∴CE=EF,∴DB=2CE,即CE=BD=×4=2,故选:B.【点睛】本题考查了全等三角形的判定与性质、角平分线定义,熟练掌握全等三角形的判定方法,全等三角形对应边相等是解题的关9、B【解析】
如图连接DH,根据面积和相等列方程求解.【详解】解:如图所示连接DH,AB=m,BC=4,BH=2,则矩形面积=4m,AH=,则矩形ABCD=三角形ABH+三角形AHD+三角形DHC,则4m=m+DE×+m,解得DE=.【点睛】本题考查勾股定理和矩形性质,能够做出辅助线是解题关键.10、D【解析】
先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1
在直角三角形DCF中,∴矩形DCGH为黄金矩形
故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.二、填空题(每小题3分,共24分)11、【解析】
根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.【详解】解:根据题意,y=400x+500(100-x)=-100x+50000;故答案为【点睛】本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.12、【解析】
根据等腰直角三角形两腰相等及勾股定理求解即可.【详解】解:∵等腰直角三角形的一腰长为1,则另一腰长也为1∴由勾股定理知,底边的长为故答案为:.【点睛】本题考查了等腰三角形的腰相等,勾股定理等知识点,熟练掌握基本的定理及图形的性质是解决此类题的关键.13、1.【解析】
解:根据图象可得,一次函数y=ax+b的图象经过(1,1)点,因此关于x的方程ax+b=1的解x=1.故答案是1.【点睛】本题考查一次函数与一元一次方程,利用数形结合思想解题是关键.14、【解析】
直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=,故答案为:.【点睛】本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.15、【解析】试题分析:∵正方形ODBC中,OC=1,∴根据正方形的性质,BC=OC=1,∠BCO=90°。∴在Rt△BOC中,根据勾股定理得,OB=。∴OA=OB=。∵点A在数轴上原点的左边,∴点A表示的数是。16、1【解析】
根据题意知,而,将代入,即可求解.【详解】解:∵是的小数部分,而我们知道,∴,∴.故答案为1.【点睛】本题目是二次根式的变型题,难度不大,正确理解题干并表示出来,是顺利解题的关键.17、(1,3)或(4,3)【解析】
根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.【详解】∵C(0,3),A(9,0)∴B的坐标为(9,3)①当P运动到图①所示的位置时此时DO=PD=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4∴OE=OD-DE=1此时P点的坐标为(1,3);②当P运动到图②所示的位置时此时DO=PO=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4此时P点的坐标为(4,3);③当P运动到图③所示的位置时此时OD=PD=5过点P作PE⊥OA于点E在RT△OPE中,根据勾股定理4∴OE=OD+DE=9此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.综上所述,P的坐标为(1,3)或(4,3)【点睛】本题主要考查等腰三角形的判定以及勾股定理的应用.18、68°【解析】
只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠ADC=66°,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠EAD=90°,∵F为DE的中点,∴FA=FD=EF,∵∠EDC=44°,∴∠ADF=∠FAD=22°,∴∠EAF=90°﹣22°=68°,故答案为:68°.【点睛】本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共66分)19、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)【解析】
(1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;(2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3,由图读出D1、D2、D3坐标即可.【详解】(1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)(2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)【点睛】此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.20、见解析【解析】
根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.【详解】证明:连接BD,∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分线BC,∴DB=DC,在Rt△DMB和Rt△DNC中,∴Rt△DMB≌Rt△DNC(HL),∴BM=CN.【点睛】本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.21、直线L上距离D点400米的C处开挖.【解析】
首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.【详解】∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴△BCD是等腰直角三角形,CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400(米),答:直线L上距离D点400米的C处开挖.【点睛】此题考查等腰直角三角形的判定及性质,利用勾股定理求直角三角形的边长,邻补角的性质求角度.22、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.【解析】
(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式.(1)利用每月要求处理污水量不低于1880吨,可列不等式求解.【详解】解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,12x+9(10-x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,1∴10-x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备1台,B型设备7台;(1)由题意:220x+180(10-x)≥1880,∴x≥2,又∵x≤,∴x为2,1.当x=2时,购买资金为12×2+9×8=96(万元),当x=1时,购买资金为12×1+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点睛】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.23、-5.【解析】
括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.【详解】(+)÷===,当x=-1时,原式=-2-3=-5.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.24、(1)证明见解析;(2)1.【解析】
(1)由全等三角形的判定定理S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024路面铺装工程测量与放样服务合同
- 2025年度智慧社区物业管理服务合同规范文本3篇
- 2025年度殡葬墓地销售及售后服务协议书3篇
- 2025年度数据中心建设承包合同参考范文4篇
- 2025年度智能车位共享平台代理销售合同模板4篇
- 2024栽树合同范本:生态湿地栽树项目合同3篇
- 2025年度智能储藏室资产交易合同4篇
- 2025年度智能化仓储储藏室租赁及运营管理协议范本4篇
- 2025年度医疗设备代工制造合同4篇
- 2025年度个人车辆购置税连带担保协议4篇
- GB/T 11072-1989锑化铟多晶、单晶及切割片
- GB 15831-2006钢管脚手架扣件
- 有机化学机理题(福山)
- 医学会自律规范
- 商务沟通第二版第4章书面沟通
- 950项机电安装施工工艺标准合集(含管线套管、支吊架、风口安装)
- 微生物学与免疫学-11免疫分子课件
- 《动物遗传育种学》动物医学全套教学课件
- 弱电工程自检报告
- 民法案例分析教程(第五版)完整版课件全套ppt教学教程最全电子教案
- 7.6用锐角三角函数解决问题 (2)
评论
0/150
提交评论