广东省深圳市福田区2024年数学八年级下册期末综合测试试题含解析_第1页
广东省深圳市福田区2024年数学八年级下册期末综合测试试题含解析_第2页
广东省深圳市福田区2024年数学八年级下册期末综合测试试题含解析_第3页
广东省深圳市福田区2024年数学八年级下册期末综合测试试题含解析_第4页
广东省深圳市福田区2024年数学八年级下册期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市福田区2024年数学八年级下册期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列命题中不正确的是()A.平行四边形是中心对称图形B.斜边及一锐角分别相等的两直角三角形全等C.两个锐角分别相等的两直角三角形全等D.一直角边及斜边分别相等的两直角三角形全等2.如图,在中,,于点,和的角平分线相较于点,为边的中点,,则()A.125° B.145° C.175° D.190°3.下列命题中正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形4.如图,矩形ABCD中,AB=8,BC=4,把矩形ABCD沿过点A的直线AE折叠,点D落在矩形ABCD内部的点D′处,则CD′的最小值是()A.4 B. C. D.5.如果关于的一元二次方程有实数根,那么的取值范围是()A. B. C. D.且6.已知点在轴上,则点的坐标是()A. B. C. D.7.甲安装队为A小区安装台空调,乙安装队为B小区安装台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装台,设乙队每天安装台,根据题意,下面所列方程中正确的是A. B. C. D.8.下列各式成立的是()A.=2 B.=-5 C.=x D.=±69.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米10.如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是()A.m=BC B.m=BC C.m=BC D.2m=BC二、填空题(每小题3分,共24分)11.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.12.已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.13.如图,已知,则等于____________度.14.如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.15.请写出一个图形经过一、三象限的正比例函数的解析式.16.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是_______.17.如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.18.如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题(共66分)19.(10分)已知直线:与轴交于点A.(1)A点的坐标为.(2)直线和:交于点B,若以O、A、B、C为顶点的四边形是平行四边形,求点C的坐标.20.(6分)(问题情境)如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.(拓展延伸)(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.21.(6分)计算题(1)(2)22.(8分)如图,在△ABC中,点D在AB边上,∠ABC=∠ACD,(1)求证:△ABC∽△ACD(2)若AD=2,AB=5.求AC的长.23.(8分)阅读理解在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.方法迁移:请解答下面的问题:在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.24.(8分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目在选手考评中的权数;(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.25.(10分)解不等式组,并将解集在数轴上表示出来.26.(10分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有()A.1个 B.2个 C.3个 D.4个

参考答案一、选择题(每小题3分,共30分)1、C【解析】解:A.平行四边形是中心对称图形,说法正确;B.斜边及一锐角分别相等的两直角三角形全等,说法正确;C.两个锐角分别相等的两直角三角形全等,说法错误;D.一直角边及斜边分别相等的两直角三角形全等,说法正确.故选C.2、C【解析】

根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【详解】如图:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.【点睛】本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.3、D【解析】

根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.【详解】A.一组对边相等且平行的四边形是平行四边形,所以A选项错误。B.对角线相等的平行四边形是矩形,所以B选项错误;C.对角线互相垂直的平行四边形是菱形,所以C选项错误;D.对角线互相垂直平分且相等的四边形是正方形,所以D选项正确;故选D【点睛】此题考查命题与定理,解题关键在于掌握各判定法则4、C【解析】

根据翻折的性质和当点D'在对角线AC上时CD′最小解答即可.【详解】解:当点D'在对角线AC上时CD′最小,

∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,

∴AD=AD'=BC=2,

在Rt△ABC中,AC===4,

∴CD'=AC-AD'=4-4,

故选:C.【点睛】本题考查了翻折变换、矩形的性质、勾股定理,利用勾股定理求出AC的长度是解题的关键.5、D【解析】

利用一元二次方程的定义和判别式的意义得到k≠0且△=(-3)2-4×k×(-1)≥0,即可得出答案.【详解】解:方程为一元二次方程,.方程有实数的解,,.综合得且.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6、A【解析】

直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.【详解】解:点在轴上,,解得:,,则点的坐标是:.故选:A.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.7、D【解析】

根据两队同时开工且恰好同时完工可得两队所用时间相等.由题意得甲队每天安装(x+2)台,所以甲安装66台所有时间为,乙队所用时间为,利用时间相等建立方程.【详解】乙队用的天数为:,甲队用的天数为:,则所列方程为:=故选D.8、A【解析】分析:根据算术平方根的定义判断即可.详解:A.,正确;B.,错误;C.,错误;D.,错误.故选A.点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.9、B【解析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.10、C【解析】

是等边三角形,延长交于,连接交于,连接,由题意、关于对称,推出,当、、共线时,的值最小,最小值为的长.【详解】如图,由题意,,是等边三角形,延长交于,连接交于,连接,由题意、关于对称,,当、、共线时,的值最小,最小值为的长,设,,在中,,,,在中,,,,.故选:.【点睛】本题考查轴对称-最短问题,翻折变换,矩形的性质等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、1500【解析】

300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.【详解】150÷(30÷300)=1500(条).故答案为:1500【点睛】本题考查的是通过样本去估计总体.12、1【解析】

根据算术平均数的计算方法列方程求解即可.【详解】解:由题意得:解得:.故答案为1.【点睛】此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.13、1【解析】

直接利用平行线的性质结合三角形外角的性质分析得出答案.【详解】∵AB∥CD,∠1=115°,∴∠FGD=∠1=115°,∴∠C+∠2=∠FGD=115°,∵∠2=65°,∴∠C=115°-65°=1°.故答案为:1.【点睛】此题主要考查了平行线的性质、三角形的外角,正确得出∠FGD=∠1=115°是解题关键.14、.【解析】

根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.【详解】解:∵△CDE恰为等边三角形,∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,∴△AEB’为等边三角形,由四边形ABCD为平行四边形,且∠B=60°,∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,∴B’,A,B三点在同一条直线上,∴AC是对折线,∴AC垂直且平分BB’,∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,∴面积为.【点睛】本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.15、y=x(答案不唯一)【解析】试题分析:设此正比例函数的解析式为y=kx(k≠1),∵此正比例函数的图象经过一、三象限,∴k>1.∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).16、1【解析】

首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【详解】第五组的频数是10×0.2=8,则第六组的频数是10-5-10-6-7-8=1.故答案是:1.【点睛】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.17、3.1【解析】

根据三角形的中位线定理解答即可.【详解】解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,∴.故答案为:3.1.【点睛】本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.18、3【解析】

根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.【详解】解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,∵四边形ABCD是平行四边形,∴OB=OD=12∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60º,∴∠AOE=60º,OE=OB,∴∠EOD=60º,OE=OD,∴△OED是等边三角形,∴∠DEO=∠AOE=60º,ED=OD=2,∴ED∥AC,∴S△AED=S△OED,作OF⊥ED于F,DF=12∴OF=OD2-DF∴S△OED=12ED·DF=∴S△AED=3.故答案为:3.【点睛】本题考查了图形的变换,平行四边形的性质,等边三角形的判定与性质,找到S△AED=S△OED是解题的关键.三、解答题(共66分)19、(1)(0,2);(2)(3,2)或(3,6)或(-3,-2).【解析】

(1),令x=0,则y=2,即可求解;(2)分AO是平行四边形的一条边、AO是平行四边形的对角线,两种情况分别求解即可.【详解】解:(1),令x=0,则y=2,则点A(0,2),故答案为(0,2);(2)联立直线l1和l2的表达式并解得:x=3,故点B(3,4),①当AO是平行四边形的一条边时,则点C(3,2)或(3,6);②当AO是平行四边形的对角线时,设点C的坐标为(a,b),点B(3,4),BC的中点和AO的中点坐标,由中点坐标公式:a+3=0,b+4=2,解得:a=-3,b=-2,故点C(-3,-2);故点C坐标为:(3,2)或(3,6)或(-3,-2).【点睛】本题考查的是一次函数综合运用,涉及到平行四边形的性质,其中(2),要分类求解,避免遗漏.20、(1)证明见解析;(2)成立.证明见解析;(3)(1)成立;(2)不成立【解析】

(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【详解】解:(1)证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.∴△ADE≌△NCE(AAS)∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点睛】本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.21、(1)(2)12【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】(1)原式==;(2)原式=6-12+12-(20-2)=-12.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、(1)详见解析;(2)【解析】

(1)根据∠ABC=∠ACD,∠A=∠A即可证明,(2)由上一问列出比例式,代入求值即可.【详解】证明:(1)∵∠ABC=∠ACD,∠A=∠A∴△ABC∽△ACD(2)解:△ABC∽△ACD∴∵AD=2,AB=5∴∴AC=【点睛】本题考查了相似三角形的判定和性质,属于简单题,列比例式是解题关键.23、S△ABC=.【解析】

方法迁移:根据题意画出图形,△ABC的面积等于矩形EFCH的面积減去三个小直角三角形的面积;思维拓展:根据题意画出图形,△ABC的面积等于大矩形的面积减去三个小直角三角形的面积【详解】建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图所示,借用网格面积可得S△ABC=S矩形EFCH﹣S△ABE﹣S△AFC﹣S△CBH=9﹣×2×1﹣×3×1﹣×2×3=【点睛】此题考查勾股定理,解题关键在于利用勾股定理算出各个边长24、(1)10%;(2)见解析.【解析】

(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,

(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.【详解】解:(1)服装权数是(2)选择李明参加比赛理由如下:李明的总成绩张华的总成绩选择李明参加比赛.【点睛】考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论