福建省福州市第二中学2024届八年级数学第二学期期末学业质量监测试题含解析_第1页
福建省福州市第二中学2024届八年级数学第二学期期末学业质量监测试题含解析_第2页
福建省福州市第二中学2024届八年级数学第二学期期末学业质量监测试题含解析_第3页
福建省福州市第二中学2024届八年级数学第二学期期末学业质量监测试题含解析_第4页
福建省福州市第二中学2024届八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市第二中学2024届八年级数学第二学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.2 B.3 C.6 D.2.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()ABCD3.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,2104.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③5.用配方法解一元二次方程时,可配方得()A. B.C. D.6.下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)7.下列各式成立的是()A.=2 B.=-5 C.=x D.=±68.下列各组线段中,能构成直角三角形的是()A.2cm,3cm,4cm B.1cm,1cm,cmC.5cm,12cm,14cm D.cm,cm,cm9.式子在实数范围内有意义,则的取值范围是()A. B. C. D.10.如图所示,在平行四边形ABCD中,AD=9,AB=5,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.4和5 B.5和4 C.6和3 D.3和611.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.12.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是()A.打六折 B.打七折 C.打八折 D.打九折二、填空题(每题4分,共24分)13.已知关于x的分式方程=1的解是非负数,则m的取值范围是_____.14.已知一组数据11、17、11、17、11、24共六个数,那么数11在这组数据中的频率是______.15.一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________

尾.16.如图,已知矩形的对角线相交于点,过点任作一条直线分别交,于,,若,,则阴影部分的面积是______.17.把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.18.若a2﹣5ab﹣b2=0,则的值为_____.三、解答题(共78分)19.(8分)如图,矩形中,,,过对角线的中点的直线分别交,边于点,连结,.(1)求证:四边形是平行四边形.(2)当四边形是菱形时,求及的长.20.(8分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.21.(8分)阅读下面的材料:解方程,这是一个一元四次方程,根据该方程的特点,它的解法通常采用换元法降次:设,那么,于是原方程可变为,解得.当时,,∴;当时,,∴;原方程有四个根:.仿照上述换元法解下列方程:(1)(2).22.(10分)如图,在中,,点P从点A开始,沿AB向点B以的速度移动,点Q从B点开始沿BC

以的速度移动,如果P、Q分别从A、B同时出发:几秒后四边形APQC的面积是31平方厘米;若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.23.(10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.24.(10分)如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.25.(12分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.(1)求a、b及k的值;(2)连接OA,OB,求△AOB的面积.26.已知,,,求的值.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以BE,AE可求出进而可求出BC的长.【详解】∵四边形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四边形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∵EF=AE+FC,AE=CF,EO=FO∴AE=EO=CF=FO,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=,∴BF=BE=2,∴CF=AE=,∴BC=BF+CF=3,故选B.2、C【解析】

试题分析:由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.解:因为开始以正常速度匀速行驶,所以s随着t的增加而增加,随后由于故障修车,此时s不发生改变,再之后加快速度匀驶,s随着t的增加而增加,综上可得S先缓慢增加,再不变,再加速增加.故选:C.考点:函数的图象.3、A【解析】由题意知,200,210,210,210,220,220,220,220,230,230,230,故众数中位数都是220,故选A.4、C【解析】

根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【详解】①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值5、C【解析】

根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【详解】移项,得x1-4x=-1在等号两边加上4,得x1-4x+4=-1+4∴(x-1)1=1.故C答案正确.故选C.【点睛】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法--配方法的运用,解答过程注意解答一元二次方程配方法的步骤.6、C【解析】

先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A.∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B.∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C.∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D.∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值7、A【解析】分析:根据算术平方根的定义判断即可.详解:A.,正确;B.,错误;C.,错误;D.,错误.故选A.点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.8、B【解析】

根据勾股定理的逆定理逐一进行判断即可得.【详解】解:A、22+32≠42,故不是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项符合题意;C、52+122≠142,故不是直角三角形,故此选项不符合题意;D、(,故不是直角三角形,故此选项不符合题意,故选B.【点睛】本题考查了勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可.9、D【解析】

根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】解:式子在实数范围内有意义,即:,解得:,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.10、B【解析】

由平行四边形的性质得出BC=AD=5,AD∥BC,证出∠DAE=∠BEA,由角平分线得出∠BAE=∠DAE,因此∠BEA=∠BAE,由等角对等边得出BE=AB=5,即可求出EC的长.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=9,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=5,∴EC=BC-BE=4;故选:B.【点睛】本题考查了平行四边形的性质、角平分线、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,证明BE=AB是解决问题的关键.11、C【解析】

根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABD中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;只有选项C中,x取1个值,y有2个值与其对应,故y不是x的函数.故选C.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.12、C【解析】

设超过200元的部分可以享受的优惠是打n折,根据:实际付款金额=500+(商品原价-500)×,列出y关于x的函数关系式,由图象将x=1000、y=900代入求解可得.【详解】设超过500元的部分可以享受的优惠是打n折,根据题意,得:y=500+(x-500)•,由图象可知,当x=1000时,y=900,即:900=500+(1000-500)×,解得:n=8,∴超过500元的部分可以享受的优惠是打8折,故选C.【点睛】本题主要考查一次函数的实际应用,理解题意根据相等关系列出实际付款金额y与商品原价x间的函数关系式是解题的关键.二、填空题(每题4分,共24分)13、m≥1【解析】

由分式方程的解为非负数得到关于m的不等式,进而求出m的范围即可.【详解】解:分式方程去分母得:m=x+1,

即x=m-1,

由分式方程的解为非负数,得到

m-1≥0,且m-1≠-1,

解得:m≥1,

故答案为m≥1.【点睛】本题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.14、0.1【解析】

根据公式:频率=即可求解.【详解】解:11的频数是3,则频率是:=0.1.故答案是:0.1.【点睛】本题考查了频率公式:频率=,理解公式是关键.15、1【解析】

由于水塘里有鲤鱼、鲢鱼共10000尾,而鲤鱼出现的频率为0.36,由此得到水塘有鲢鱼的频率,然后乘以总数即可得到水塘有鲢鱼又多少尾.【详解】∵水塘里有鲤鱼、鲢鱼共10000尾,

一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为0.36,

∴鲢鱼出现的频率为64%,

∴水塘有鲢鱼有10000×64%=1尾.

故答案是:1.【点睛】考查了利用频率估计概率的思想,首先通过实验得到事件的频率,然后即可估计事件的概率.16、1【解析】

首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△AOD的面积.【详解】∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠AEO=∠CFO.在△AOE和△COF中,∵,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影=S△COF+S△EOD=S△AOE+S△EOD=S△AOD.∵S△AODBC•AD=1,∴S阴影=1.故答案为:1.【点睛】本题考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的,是解决问题的关键.17、1<m<1.【解析】

直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,求出直线y=﹣x﹣3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.【详解】解:直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第二象限,∴,解得:1<m<1.故答案为1<m<1.【点睛】本题考查一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于2、纵坐标大于2.18、5【解析】

由已知条件易得,,两者结合即可求得所求式子的值了.【详解】∵,∴,∵,∴.故答案为:5.【点睛】“能由已知条件得到和”是解答本题的关键.三、解答题(共78分)19、(1)证明见解析;(2)BE=5,EF=.【解析】

(1)根据平行四边形的性质,判定,得出四边形的对角线互相平分,进而得出结论;(2)在中,由勾股定理得出方程,解方程求出,由勾股定理求出,得出,再由勾股定理求出,即可得出的长.【详解】(1)证明:四边形是矩形,是的中点,,,,,,在和中,,,,四边形是平行四边形;(2)解:当四边形是菱形时,,设,则,.在中,,,解得,即,,,,,.【点睛】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.20、这个多边形的边数是1.【解析】试题分析:设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.试题解析:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=2×360°+180°,解得n=1.故这个多边形的边数是1.21、(1);(2),为原方程的解【解析】

(1)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后解关于x的一元二次方程;(2)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后进行检验即可.【详解】(1)令∴∴∴,∴舍,∴(2)令∴∴∴∴,∴,∴,经检验,,为原方程的解.【点睛】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.22、经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;经过3秒时,S取得最小值27平方厘米.【解析】

(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据面积为31列出方程,求出方程的解即可得到结果;(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.【详解】设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意得:,即,整理得,解得:,.答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;依题意得,,即,当,即时,.答:经过3秒时,S取得最小值27平方厘米.【点睛】此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23、(1)购买甲种树苗500株,乙种树苗300株(2)320株(3)当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元【解析】

(1)设购买甲种树苗株,乙种树苗株,列方程组求得(2)设购买甲种树苗株,乙种树苗株,列不等式求解(3)设甲种树苗购买株,购买树苗的费用为元,列出关系式,根据函数的性质求出w的最小值.【详解】(1)设购买甲种树苗株,乙种树苗株,得解得答:购买甲种树苗500株,乙种树苗300株.(2)设购买甲种树苗株,乙种树苗株,得解得答:甲种树苗至少购买320株.(3)设甲种树苗购买株,购买树苗的费用为元,则∵∴随增大而减小所以当时,有最小值,最小=元答:当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元.24、见解析.【解析】

根据∠ADB=∠CBD,可知AD∥BC,由题意DE⊥AC,BF⊥AC,可知∠AED=∠CFB=90°,因为DE=BF,所以证出△ADE≌△CBF(AAS),根据有一组对边平行且相等的四边形是平行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论