江苏省启东市南苑中学2024届八年级下册数学期末联考试题含解析_第1页
江苏省启东市南苑中学2024届八年级下册数学期末联考试题含解析_第2页
江苏省启东市南苑中学2024届八年级下册数学期末联考试题含解析_第3页
江苏省启东市南苑中学2024届八年级下册数学期末联考试题含解析_第4页
江苏省启东市南苑中学2024届八年级下册数学期末联考试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省启东市南苑中学2024届八年级下册数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是()A. B. C. D.2.下列各点在反比例函数图象上的是()A. B. C. D.3.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长()A.2 B.3 C.4 D.2.54.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分B.测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等5.在菱形ABCD中,对角线AC,BD相交于点O,AD=5,AC=8,则OD的长为()A.4 B.5 C.6 D.36.如图,P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列三个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③7.顺次连接四边形各边的中点,所成的四边形必定是()A.等腰梯形 B.直角梯形 C.矩形 D.平行四边形8.如图,先将矩形ABCD沿三等分线折叠后得到折痕PQ,再将纸片折叠,使得点A落在折痕PQ上E点处,此时折痕为BF,且AB=1.则AF的长为()A.4 B. C. D.9.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.三条边相等的四边形是菱形D.三个角是直角的四边形是矩形10.使用同一种规格的下列地砖,不能进行平面镶嵌的是(

)A.正三角形地砖B.正四边形地砖C.正五边形地砖D.正六边形地砖二、填空题(每小题3分,共24分)11.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.12.一次函数,当时,,则_________.13.如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.14.已知中,,点为边的中点,若,则长为__________.15.若关于x的分式方程的解为非负数,则a的取值范围是_____.16.某鞋店试销一种新款女鞋,销售情况如下表所示:型号

22

22.5

23

23.5

24

24.5

25

数量(双)

3

5

10

15

8

3

2

鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差17.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=2,则四边形MABN的面积是___________.18.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.三、解答题(共66分)19.(10分)问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.20.(6分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?21.(6分)定义:我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(3)问题解决:如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=1.求GE的长度.22.(8分)如图,中,点为边上一点,过点作于,已知.(1)若,求的度数;(2)连接,过点作于,延长交于点,若,求证:.23.(8分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:(1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),

求y与x的关系式;(2)每本字典的厚度为多少?24.(8分)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.25.(10分)在平面直角坐标系xOy中,点A(0,4),B(1,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+1.(1)当直线l经过D点时,求点D的坐标及k的值;(2)当直线L与正方形有两个交点时,直接写出k的取值范围.26.(10分)如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)求△OAC的面积;(3)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;(4)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..2、C【解析】

由可得,xy=-5,然后进行排除即可.【详解】解:由,即,xy=-5,经排查只有C符合;故答案为C.【点睛】本题考查了反比例函数的性质,即对于反比例函数,有xy=k是解答本题的关键.3、A【解析】

根据平行四边形的性质可得AB=CD=5,AD=BC=3,AB∥CD,然后根据平行线的性质可得∠EAB=∠AED,然后根据角平分线的定义可得∠EAB=∠EAD,从而得出∠EAD=∠AED,根据等角对等边可得DA=DE=3,即可求出EC的长.【详解】解:∵四边形ABCD是平行四边形,AB=5,BC=3,∴AB=CD=5,AD=BC=3,AB∥CD∴∠EAB=∠AED∵AE平分∠DAB∴∠EAB=∠EAD∴∠EAD=∠AED∴DA=DE=3∴EC=CD-DE=2故选A.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.4、D【解析】

根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.【点睛】本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.5、D【解析】

由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.【详解】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=4∵AD=5,∴OD=AD故选D.【点睛】本题考查了菱形的性质和勾股定理.6、B【解析】

连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,于是得到结论.【详解】解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴AP=PC,∠BAP=∠BCP,又∵PE⊥BC,PF⊥CD,∴四边形PECF是矩形,∴PC=EF,∠BCP=∠PFE,∴AP=EF,∠PFE=∠BAP,故①③正确;只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;故选:B.【点睛】本题主要考查了正方形的性质,正确证明△ABP≌△CBP,以及理解P的任意性是解决本题的关键.7、D【解析】

根据题意,画出图形,连接AC、BD,根据一组对边平行且相等的四边形是平行四边形进行判定.【详解】解:四边形ABCD的各边中点依次为E、F、H、G,∴EF为△ABD的中位线,GH为△BCD的中位线,∴EF∥BD,且EF=BD,GH∥BD,且GH=BD,∴EF∥GH,EF=GH,∴四边形EFHG是平行四边形.故选:D.【点睛】此题考查平行四边形的判定和三角形中位线定理.解题的关键是正确画出图形,注意利用图形求解.8、C【解析】

作EM⊥AD于M,交BC于N.只要证明△EMB∽△BNE,可得BE:EF=BN:EM,由此即可解决问题.【详解】解:作EM⊥AD于M,交BC于N.在Rt△BEN中,BE=AB=1,EN=6,∴BN=,∵∠FEM+∠BEN=10°,∠BEN+∠EBN=10°,∴∠FEM=∠EBN,∵∠FME=∠ENB=10°,∴△EMB∽△BNE,∴BE:EF=BN:EM,∴1:EF=3:3,∴EF=,∴AF=EF=.故选C.【点睛】本题考查翻折变换、矩形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形解决问题,属于中考常考题型.9、D【解析】

由矩形和菱形的判定方法得出选项A、B、C错误,选项D正确.【详解】A、∵对角线互相垂直平分的四边形是菱形,∴选项A错误;B、∵对角线互相平分且相等的四边形是矩形,∴选项B错误;C、∵四条边相等的四边形是菱形,∴选项C错误;D、∵三个角是直角的四边形是矩形,∴选项D正确;故选:D.【点睛】本题考查了矩形的判定方法、菱形的判定方法;熟记矩形和菱形的判定方法是解决问题的关键.10、C【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;

B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;

C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;

D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.

故选C.二、填空题(每小题3分,共24分)11、【解析】

先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.12、3或1【解析】

分k>0和k<0两种情况,结合一次函数的增减性,可得到关于k、b的方程组,求解即可.【详解】解:当k>0时,此函数y随x增大而增大,∵当1≤x≤4时,3≤y≤1,∴当x=1时,y=3;当x=4时,y=1,∴,解得;当k<0时,此函数y随x增大而减小,∵当1≤x≤4时,3≤y≤1,∴当x=1时,y=1;当x=4时,y=3,∴,解得:,∴k+b=3或1.故答案为:3或1.【点睛】本题考查的是一次函数的性质,在解答此题时要注意进行分类讨论.13、1【解析】

首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;【详解】解:分别以D和E作为圆心,以略长于EH的长度为半径作弧,交于点F,连接AF并延长,交CD于G,则AG即为∠BAD的角平分线,设AG交BD于H,则AG垂直平分线线段DE(等腰三角形三线合一),∴DH=EH=3,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AGD=∠GAB,∵∠DAG=∠GAB,∴∠DAG=∠DGA,∴DA=DG,∵DE⊥AG,∴AH=GH(等腰三角形三线合一),在Rt△ADH中,AH=,∴AG=2AH=1,故答案为1.【点睛】本题考查作图-复杂作图、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;14、【解析】

根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D为AB的中点,∴AB=2CD=1,故答案为:1.【点睛】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.15、且【解析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.16、B【解析】

根据题意可得:鞋店经理最关心的是,哪种型号的鞋销量最大,即各型号的鞋的众数.【详解】鞋店经理最关心的是,哪种型号的鞋销量最大,而众数是数据中出现次数最多的数,故鞋店经理关心的是这组数据的众数.

故选:B.17、18【解析】

如图,连接CD,与MN交于点E,根据折叠的性质可知CD⊥MN,CE=DE.再根据相似三角形的判定可知△MNC∽△ABC,再根据相似三角形的面积之比等于相似比的平方.由图可知四边形ABNM的面积等于△ABC的面积减去△MNC的面积.【详解】解:连接CD,交MN于点E.∵△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,∴CD⊥MN,CE=DE.∵MN∥AB,∴△MNC∽△ABC,CD⊥AB,∴===4.∵=MCCN=62=6,∴=24,∴四边形ACNM=-=24-6=18故答案是18.【点睛】本题考查了折叠的性质、相似三角形的性质和判定,根据题意正确作出辅助线是解题的关键.18、135【解析】试题分析:如图,连接EE′,∵将△ABE绕点B顺时针旋转30°到△CBE′的位置,AE=1,BE=3,CE=3,∴∠EBE′=30°,BE=BE′=3,AE=E′C=1.∴EE′=3,∠BE′E=45°.∵E′E3+E′C3=8+1=3,EC3=3.∴E′E3+E′C3=EC3.∴△EE′C是直角三角形,∴∠EE′C=30°.∴∠BE′C=135°.三、解答题(共66分)19、(1)4;(2)5;(3)600(+1).【解析】

(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=BQ=5.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE=BD,∴AB+BC=AB+AE=BE=BD,∴BC+BC+BD=(+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC是直径,∴BD=AC时,AB+BC+BD的值最大,最大值=600(+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.20、(1);(2)55元【解析】

(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+1.综上所述:y与x之间的函数关系式为.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+1)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.21、(1)四边形ABCD是垂美四边形,证明见解析(2)①,证明见解析;②四边形FMAN是矩形,证明见解析(3)【解析】

(1)根据垂直平分线的判定定理证明即可;(2)①根据垂直的定义和勾股定理解答即可;②根据在Rt△ABC中,点F为斜边BC的中点,可得,再根据△ABD和△ACE是等腰三角形,可得,再由(1)可得,,从而判定四边形FMAN是矩形;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.【详解】(1)四边形ABCD是垂美四边形连接AC、BD∵∴点A在线段BD的垂直平分线上∵∴点C在线段BD的垂直平分线上∴直线AC是线段BD的垂直平分线∴∴四边形ABCD是垂美四边形;(2)①,理由如下如图,已知四边形ABCD中,,垂足为E由勾股定理得②四边形FMAN是矩形,理由如下如图,连接AF∵在Rt△ABC中,点F为斜边BC的中点∵△ABD和△ACE是等腰三角形由(1)可得,∵∴四边形FMAN是矩形;(3)连接CG、BE,,即在△AGB和△ACE中∵,即∴四边形CGEB是垂美四边形由(2)得.【点睛】本题考查了垂美四边形的问题,掌握垂直平分线的判定定理、垂直的定义、勾股定理、垂美四边形的性质、全等三角形的性质以及判定定理是解题的关键.22、(1)∠BEA=70°;(2)证明见解析;【解析】

(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.

(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.【详解】(1)解:作BJ⊥AE于J.

∵BF⊥AB,

∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,

∴∠ABJ=∠AEF,

∵四边形ABCD是平行四边形,

∴∠D=∠ABC,

∵∠D=2∠AEF,

∴∠ABE=2∠AEF=2∠ABJ,

∴∠ABJ=∠EBJ,

∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,

∴∠BAJ=∠BEJ,

∵∠BAE=70°,

∴∠BEA=70°.

(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.

∵AD∥BC,

∴∠DAE=∠BEA,

∵∠BAE=∠BEA,

∴∠BAE=∠DAE,

∵EF⊥AB,EM⊥AD,

∴EF=EM,

∵EA=EA,∠AFE=∠AME=90°,

∴Rt△AEF≌Rt△AEM(HL),

∴AF=AM,

∵EG⊥CG,

∴∠EGC=90°,

∵∠ECG=45°,

∠GCE=45°,

∴GE=CG,

∵AD∥BC,

∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,

∴∠GAH=∠GHA,

∴GA=GH,

∵∠AGE=∠CGH,

∴△AGE≌△HGC(SAS),

∴EA=CH,

∵CM=CN,∠AME=∠CNH=90°,

∴Rt△EMA≌Rt△CNH(HL),

∴AM=NH,

∴AN=HM,

∵△ACN是等腰直角三角形,

∴AC=AN,即AN=AC,

∴AH=AM+HM=AF+AC.【点睛】此题考查平行四边形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、(1)y=5x+85,(2)5cm.【解析】分析:(1)利用待定系数法即可解决问题;(2)每本字典的厚度==5(cm).详(1)解:根据题意知y与x之间是一次函数关系,故设y与x之间的关系的关系式为y=kx+b则,解得:k=5,b=85∴关系式为y=5x+85,(2)每本字典的厚度==5(cm).点睛:本题考查一次函数的应用、解题的关键是熟练掌握待定系数法解决问题.24、四边形ABFC是平行四边形;证明见解析.【解析】

易证△ABE≌△FCE(AAS),然后利用一组对边平行且相等可判断四边形ABFC是平行四边形.【详解】四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,∴△ABE≌△FCE(AAS);∴AB=CF,又∵AB∥CF,∴四边形ABFC是平行四边形.考点:1平行四边形的判定;2全等三角形.25、(2)D(4,7),k=2;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论