![四川省遂宁市安居区石洞中学2024届数学八年级下册期末质量跟踪监视试题含解析_第1页](http://file4.renrendoc.com/view2/M01/15/34/wKhkFmYWssSAZH8fAAG-Zv6fyII998.jpg)
![四川省遂宁市安居区石洞中学2024届数学八年级下册期末质量跟踪监视试题含解析_第2页](http://file4.renrendoc.com/view2/M01/15/34/wKhkFmYWssSAZH8fAAG-Zv6fyII9982.jpg)
![四川省遂宁市安居区石洞中学2024届数学八年级下册期末质量跟踪监视试题含解析_第3页](http://file4.renrendoc.com/view2/M01/15/34/wKhkFmYWssSAZH8fAAG-Zv6fyII9983.jpg)
![四川省遂宁市安居区石洞中学2024届数学八年级下册期末质量跟踪监视试题含解析_第4页](http://file4.renrendoc.com/view2/M01/15/34/wKhkFmYWssSAZH8fAAG-Zv6fyII9984.jpg)
![四川省遂宁市安居区石洞中学2024届数学八年级下册期末质量跟踪监视试题含解析_第5页](http://file4.renrendoc.com/view2/M01/15/34/wKhkFmYWssSAZH8fAAG-Zv6fyII9985.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁市安居区石洞中学2024届数学八年级下册期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在平行四边形中,,,的平分线交于点,则的长是()A.4 B.3 C.3.5 D.22.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC3.如图,在矩形ABCD中,E,F,G,H分别为边AB,DA,CD,BC的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.84.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是()物体的质量(kg)012345弹簧的长度(cm)1012.51517.52022.5A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm5.我们把宽与长的比值等于黄金比例的矩形称为黄金矩形.如图,在黄金矩形()的边上取一点,使得,连接,则等于()A. B. C. D.6.下列说法中正确的是()A.有一组对边平行的四边形是平行四边形 B.对角线互相垂直的四边形是菱形C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是正方形7.若a<0,b>0,则化简的结果为()A. B. C. D.8.下列二次根式中,属于最简二次根式的是()A. B. C. D.9.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤110.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.5011.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E、F,将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的取值范围是()A.4<m<6 B.4≤m≤6 C.4<m<5 D.4≤m<512.下列计算正确的是()A.﹣= B.×=6C.÷2=2 D.=﹣1二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.14.菱形的两条对角线分别为18cm与24cm,则此菱形的周长为_____.15.如图,利用函数图象可知方程组的解为______.16.一个不透明的袋中装有3个红球,2个黄球,1个白球,每个球除颜色外都相同,从袋中任意摸出一球,则摸到__________球的可能性最大。(填“红色”、“黄色”或“白色”)17.如图,AD∥BC,CP和DP分别平分∠BCD和∠ADC,AB过点P,且与AD垂直,垂足为A,交BC于B,若AB=10,则点P到DC的距离是_____.18.如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点A的坐标是(2,3),则C点坐标是_____.三、解答题(共78分)19.(8分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.20.(8分)如图,点A和点B分别在x轴和y轴上,且OA=OB=4,直线BC交x轴于点C,S△BOC=S△ABC.(1)求直线BC的解析式;(2)在直线BC上求作一点P,使四边形OBAP为平行四边形(尺规作图,保留痕迹,不写作法).21.(8分)如图,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动.(1)如果点,分别从点,同时出发,那么几秒后,的面积等于6?(2)如果点,分别从点,同时出发,那么几秒后,的长度等于7?
22.(10分)已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.23.(10分)如图,矩形ABCD和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:;(2)求证:;24.(10分)已知函数y=和y=,A(1,n)、B(m,4)两点均在函数y=的图像上,设两函数y=和y=的图像交于一点P.(1)求实数m,n的值;(2)求P,A,B三点构成的三角形PAB的面积.25.(12分)反比例函数的图象如图所示,,是该图象上的两点,(1)求的取值范围;(2)比较与的大小.26.化简求值:,其中m=﹣1.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据平行四边形的性质可得,再根据角平分线的性质可推出,根据等角对等边可得,即可求出的长.【详解】∵四边形ABCD是平行四边形∴∴∵是的平分线∴∴∴∴故答案为:B.【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.2、D【解析】
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.3、B【解析】
连接AC,根据三角形中位线定理得到EH∥AC,EH=AC,得到△BEH∽△BAC,根据相似三角形的性质计算即可.【详解】解:连接AC,∵E、H分别为边AB、BC的中点,∴EH∥AC,EH=AC,∴△BEH∽△BAC,∴S△BEH=S△BAC=S矩形ABCD,同理可得,图中阴影部分的面积=×2×4=4,故选B.【点睛】本题考查的是三角形中位线定理、相似三角形的性质,掌握三角形中位线定理、相似三角形的面积比等于相似比的平方是解题的关键.4、B【解析】
因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选B.点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5、B【解析】
利用黄金矩形的定理求出=,再利用矩形的性质得,代入求值即可解题.【详解】解:∵矩形ABCD中,AD=BC,根据黄金矩形的定义可知=,∵,∴故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.6、C【解析】
运用正方形的判定,菱形的判定,平行四边形的性质和判定可求解.【详解】解:A、有一组对边平行的四边形不一定是平行四边形(如梯形),故该选项错误;B、对角线互相垂直的四边形不一定是菱形(如梯形的对角线也可能垂直),故该选项错误;C、有一组邻边相等的平行四边形是菱形,故该选项正确;D、对角线互相垂直平分的四边形不一定是正方形(如菱形),故该选项错误;故选:C.【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质和判定,灵活运用这些判定定理是解决本题的关键.7、B【解析】
根据二次根式的性质化简即可.【详解】解:由于a<0,b>0,∴ab<0,∴原式=|ab|=−ab,故选:B.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,属于基础题型.8、C【解析】
根据二次根式的定义即可求解.【详解】A.,根号内含有分数,故不是最简二次根式;B.,根号内含有小数,故不是最简二次根式;C.,是最简二次根式;D.=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.9、C【解析】
不等式整理后,由已知解集确定出k的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x<3,所以k+2≥3,得到k的范围是k≥1,故选:C.【点睛】本题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、D【解析】试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知AB2=A故选D.点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.11、A【解析】
根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到EF上时的x的值,从而得到m的取值范围,即可得出答案.【详解】∵菱形ABCD的顶点A(2,0),点B(1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=−2,∴点D向左移动2+4=6时,点D在EF上,∵点D落在△EOF的内部(不包括三角形的边),∴4<m<6.故选A.【点睛】本题考查了菱形的性质及点的平移.利用菱形的性质求出点D的坐标并确定点D在EF上时的的横坐标是解题的关键.12、B【解析】
利用二次根式的加减法对A进行判定;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;利用分母有理化可对D进行判断.【详解】A、原式=2﹣=,所以A选项错误;B、原式=2×3=6,所以B选项正确;C、原式=,所以C选项错误;D、原式=,所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(每题4分,共24分)13、2.【解析】
以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.【详解】以BC为边作等边三角形BCG,连接FG,AG,
作GH⊥AC交AC的延长线于H,
∵△BDE和△BCG是等边三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG===2,
∴AF+CF的最小值是2.【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.14、60cm【解析】
试题分析:根据菱形的性质对角线互相垂直平分,利用勾股定理求出菱形的边长即可解决问题.【详解】解:如图,四边形ABCD是菱形,AC=24,BD=18,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=12,OD=OB=9,AB=BC=CD=AD,∴AD==1.∴菱形的周长为=60cm.故答案为60cm【点评】本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.15、【解析】
观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;【详解】观察图象可知,y=2x与x+ky=3相交于点(1,2),可求出方方程组的解为,故答案为:【点睛】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.16、红色【解析】
可根据概率公式计算出红球、黄球、白球摸到的概率,然后比较即可【详解】解:总共有3+2+1=6个球,摸到红球的概率为:,摸到黄球的概率为:,摸到白球的概率为:,所以红色球的可能性最大.【点睛】本题考查可能性的大小,可根据随机等可能事件的概率计算公式分别计算出它们的概率,然后比较即可,也可以列举出所有可能的结果,比较即可.17、1【解析】
过点P作PE⊥DC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PB=PE,再根据AB=10,即可得到PE的长.【详解】如图,过点P作PE⊥DC于E.∵AD∥BC,PA⊥AD,∴PB⊥CB.∵CP和DP分别平分∠BCD和∠ADC,∴PA=PE,PB=PE,∴PE=PA=PB.∵PA+PB=AB=10,∴PA=PB=1,∴PE=1.故答案为1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.18、(﹣3,2).【解析】
过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【详解】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,如图所示:∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=3,CE=OD=2,∵点C在第二象限,∴点C的坐标为(﹣3,2).故答案为(﹣3,2).【点睛】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.三、解答题(共78分)19、(1)4;(2)48.【解析】
(1)根据中点值的定义进行求解即可;(2)根据中点值的定义可求得m的值,再将方程的根代入方程可求得n的值,由此即可求得答案.【详解】(1),x2-2×4x+3=0,42-3=13>0,所以中点值为4,故答案为4;(2)由中点值的定义得:,,,将代入方程,得:,,.【点睛】本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键.20、(1);(2)见解析.【解析】
(1)根据三角形面积公式得到OC=AC=OA=2,则C(2,0),然后利用待定系数法求直线BC的解析式;(2)当AP⊥x轴时,AP∥OB,利用OC=AC可得到AP=OB,根据平行四边形的判定方法可得到四边形OBAP为平行四边形,于是过点A作x轴的垂线交直线BC于P即可.【详解】(1)依题意,A(4,0),B(0,4),因为S△BOC=S△ABC,所以,C为OA中点,所以,C(2,0),设直线BC的解析式为:,则有,所以,k=-2,b=4,直线BC的解析式为:(2)过点A作AP垂直x轴,交BC的延长线于P,连结OP,点P为所求.【点睛】此题考查作图—复杂作图,待定系数法求一次函数解析式,平行四边形的判定,解题关键在于掌握作图法则21、(1)出发1秒后,的面积等于6;(2)出发0秒或秒后,的长度等于7.【解析】
(1)设秒后,的面积等于6,根据路程=速度×时间,即可用x表示出AP、BQ和BP的长,然后根据三角形的面积公式列一元二次方程,并解方程即可;(2)设秒后,的长度等于7,根据路程=速度×时间,即可用y表示出AP、BQ和BP的长,利用勾股定理列一元二次方程,并解方程即可.【详解】解:(1)设秒后,的面积等于6,∵点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动∴,∴则有∴(此时2×6=12>BC,故舍去)答:出发1秒后,的面积等于6(2)设秒后,的长度等于7∵点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动∴,∴解得答:出发0秒或秒后,的长度等于7.【点睛】此题考查的是一元二次方程的应用,掌握几何问题中的等量关系和行程问题公式是解决此题的关键.22、(1)证明见解析,(2)当AB=AC时,四边形ADCF为矩形,理由见解析.【解析】
(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.【详解】解:(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(2)AB=AC,理由如下:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.考点:全等三角形的判定与性质;矩形的判定.23、(1)详见解析;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度校园基础设施装修改造工程合同
- 2025年度房产居间合同:旅游地产项目开发合作协议
- 2025年度标前协议模板:XX基础设施建设合作前期协议
- 2025年度酒店客房预订客户投诉处理合同
- 2025年度博物馆安防监控设备采购与安装合同
- 学期班级教学活动工作任务计划
- 学期阅读推广活动计划
- 社区文艺活动计划
- 生物教育在新时代的挑战与机遇计划
- 2025年温控仪表项目发展计划
- 清新淡雅简洁通用模板课件
- 北京市乡镇卫生院街道社区卫生服务中心地址医疗机构名单(344家)
- 加油站新员工入职心得体会(篇)
- 国有金融企业年金管理办法
- 最简单个人简历模板
- 物业服务有限公司突发停电应急处理流程图
- 安全学原理第2版-ppt课件(完整版)
- 2022年《民法学一》课程教案
- 收展基本法大赛试题及答案
- 2022年山西省中考物理试题(含答案)
- QC成果:预制扭王字块体表面缺陷控制知识分享
评论
0/150
提交评论