版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年上海市嘉定区名校数学八年级下册期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点到原点的距离是()A. B. C. D.2.已知代数式-m2+4m-4,无论m取任何值,它的值一定是()A.正数 B.负数 C.非正数 D.非负数3.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A.1B.2C.3D.44.反比例函数的图象如图所示,以下结论错误的是()A.B.若点在图象上,则C.在每个象限内,的值随值的增大而减小D.若点,在图象上,则5.如图图形中,是中心对称图形,但不是轴对称图形的是()A. B.C. D.6.若分式2aba+b中a,b都扩大到原来的3倍,则分式2abA.扩大到原来3倍 B.缩小3倍 C.是原来的13 D.7.如图,已知正比例函数y1=ax与一次函数y2=-12A.a>0 B.b<0C.当x<0时,y1>y2 D.8.在同一坐标系中,函数y=kx与y=3x﹣k的图象大致是()A. B. C. D.9.小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是()分数202122232425262728人数2438109631A.该组数据的众数是24分B.该组数据的平均数是25分C.该组数据的中位数是24分D.该组数据的极差是8分10.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是()A. B. C. D.11.估计的值在()A.2和3之间 B.3和4之间C.4和5之间 D.5和6之间12.如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为()A.6 B.5 C.4 D.3二、填空题(每题4分,共24分)13.已知反比例函数的图象与一次函数y=k(x﹣3)+2(k>0)的图象在第一象限交于点P,则点P的横坐标a的取值范围为___.14.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.15.若反比例函数的图象经过点,则的图像在_______象限.16.甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.17.如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.18.在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA﹣AB﹣BC的路径再回到C点,需要____分的时间.三、解答题(共78分)19.(8分)综合与探究如图,在平面直角坐标系中,直线y=x-3与坐标轴交于A,B两点.(1)求A,B两点的坐标;(2)以AB为边在第四象限内作等边三角形ABC,求△ABC的面积;(3)在平面内是否存在点M,使得以M,O,A,B为顶点的四边形是平行四边形,若存在,直接写出M点的坐标:若不存在,说明理由.20.(8分)化简求值:(﹣1)÷,其中a=2﹣.21.(8分)正方形中,点是上一点,过点作交射线于点,连结.(1)已知点在线段上.①若,求度数;②求证:.(2)已知正方形边长为,且,请直接写出线段的长.22.(10分)已知:如图,在□ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,过点F作FG⊥BF交BC的延长线于点G.(1)求证:四边形ABEF是菱形;(2)如果AB=2,∠BAD=60°,求FG的长.23.(10分)自年月日日起,合肥市进入冰雪灾害天气,如图,一棵大树在离地面米处折断,树的顶端落在离树干底部米处,求这棵树折断之前的高度.24.(10分)(1)用配方法解方程:;(2)用公式法解方程:.25.(12分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6cm,AC=10cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).(1)求证:四边形ACFD是平行四边形.(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?(3)将Rt△ABC向左平移4cm,求四边形DHCF的面积.26.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:(1)本次共调查了名学生,扇形统计图中D所对应扇形的圆心角为度;(2)把这幅条形统计图补充完整(画图后请标注相应的数据);(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有名.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据勾股定理可求点到原点的距离.【详解】解:点到原点的距离为:;故选:C.【点睛】本题考查了勾股定理,两点间的距离公式,熟练掌握勾股定理是解题的关键.2、C【解析】
直接利用完全平方公式分解因式进而利用偶次方的性质分析得出即可.【详解】∵-m2+4m-4=-(m2-4m+4)=-(m-2)2,(m-2)2≥0,∴-(m-2)2≤0,故选C.【点睛】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.3、B【解析】
根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0,∴一次函数中y随x的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x>1时,y<0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y随x的增大而减小,④不正确.故选:B【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数基本性质.4、D【解析】
根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一、三象限,∴k>0故A正确;
当点M
(1,3)在图象上时,代入可得k=3,故B正确;
当反比例函数的图象位于一、三象限时,在每一象限内,y随x的增大而减小,
故C正确;
将A(-1,a),B(2,b)代入中得到,得到a=-k,
∵k>0
∴a<b,
故D错误,
故选:D.【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键5、C【解析】
根据轴对称图形与中心对称图形的概念求解【详解】A.是轴对称图形,是中心对称图形,不符合题意;B.是轴对称图形,是中心对称图形,不符合题意;C.不是轴对称图形,是中心对称图形,符合题意;D.是轴对称图形,是中心对称图形,不符合题意.故选C【点睛】本题考查轴对称图形与中心对称图形,熟悉概念即可解答.6、A【解析】
把分式中的分子,分母中的
a,b都同时变成原来的3倍,就是用
3a,
3b分别代替式子中的a
,
b,看得到的式子与原式子的关系.【详解】将分式2aba+b中a,b都扩大到原来的3倍,得到18ab3a+3b=6aba+b,则6aba+b是2aba+b的【点睛】本题考查分式的性质,解题的关键是掌握分式的性质.7、A【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】∵y1∴a>0,故A正确;∵y2=-1∴b>0,故B错误;∵正比例函数y1∴当x<0时,y1<y当x>2时,y1>y故选:A.【点睛】此题考查一次函数和正比例函数的图象与性质,解题关键在于结合函数图象进行判断.8、B【解析】分析:根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.详解:根据图象知:第二个函数一次项系数为正数,故图象必过一、三象限,而y=kx必过一三或二四象限,A.
k<0,−k<0.解集没有公共部分,所以不可能,故此选项错误;B.
k<0,−k>0.解集有公共部分,所以有可能,故此选项正确;C..解集没有公共部分,所以不可能,故此选项错误;D.正比例函数的图象不对,所以不可能,故此选项错误.故选B.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.9、B【解析】
根据众数、中位数、极差的概念,采用逐一检验法进行答题.【详解】A、数据24出现了10次,出现次数最多,所以这组数据的众数是24分,故A正确;B、=24分,故B错误;C、这组数据一共有46个数据,2+4+3+8=17<23,2+4+3+8+10=27>24,所以这组数据的中位数是24分,故C正确;D、该组数据的极差是28-20=8分,故D正确,符合题意的是B选项,故选B.【点睛】本题考查了平均数,中位数,众数及极差的概念及求法,熟练掌握相关定义以及求解方法是解题的关键.10、B【解析】根据题意,在实验中有3个阶段,①、铁块在液面以下,液面得高度不变;②、铁块的一部分露出液面,但未完全露出时,液面高度降低;③、铁块在液面以上,完全露出时,液面高度又维持不变;分析可得,B符合描述;故选B.11、C【解析】
由可知,再估计的范围即可.【详解】解:,.故选:C.【点睛】本题考查了实数的估算,熟练的确定一个无理数介于哪两个整数之间是解题的关键.12、D【解析】
设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.【详解】解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:,设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x)2=42+x2,解得:x=1,则BD=1.故答案为:1.【点睛】此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.二、填空题(每题4分,共24分)13、2<a<1.【解析】
先确定一次函数图象必过点(1,2),根据k>0得出直线必过一、三象限,继而结合图象利用数形结合思想即可得出答案.【详解】当x=1时,y=k(1﹣1)+2=2,即一次函数过点(1,2),∵k>0,∴一次函数的图象必过一、三象限,把y=2代入y=,得x=2,观察图象可知一次函数的图象和反比例函数y=图象的交点的横坐标大于2且小于1,∴2<a<1,故答案为:2<a<1.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握相关知识并正确运用数形结合思想是解题的关键.14、()n-1【解析】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2-1=;第三个矩形的面积是()3-1=;…故第n个矩形的面积为:.考点:1.矩形的性质;2.菱形的性质.15、二、四【解析】
用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.【详解】解:将点代入得,解得:因为k<0,所以的图像在二、四象限.故答案为:二、四【点睛】本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.16、甲【解析】
根据根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。17、13×(23)【解析】
已知正方形A1B1C1D1的边长为13,然后得到正方形A2B2C2D2的边长为,然后得到规律,即可求解.【详解】解:∵正方形A1B1C1D1的边长为13正方形A2B2C2D2的边长为1正方形A3B3C3D3的边长为13…,正方形A2018B2018C2018D2018的边长为13故答案为13【点睛】本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.18、1【解析】
运用勾股定理可求出斜边AB的长,然后可求出直角三角形的周长即蜗牛所走的总路程,再除以蜗牛的行走速度即可求出所需的时间.【详解】解:由题意得,100cm,∴AB=100cm;∴CA+AB+BC=60+80+100=240cm,∴240÷20=1(分).故答案为1.【点睛】本题考查了速度、时间、路程之间的关系式及勾股定理的应用,考查了利用勾股定理解直角三角形的能力.三、解答题(共78分)19、(1)A(0,-3),B(4,0);(2);(3)存在,(-4,-3)或(4,3)或(4,-3).【解析】
(1)当x=0时,y=-3,当y=0时,x=4,可求A,B两点的坐标;
(2)由勾股定理可求AB的长,即可求△ABC的面积;
(3)分两种情况讨论,由平行四边形的性质可求点M坐标.【详解】(1)在中,令x=0,得y=-3令y=0,得x=4∴A(0,-3),B(4,0)(2)由(1)知:OA=3,0B=4在RtΔAOB中,由勾股定理得:AB=5.如图:过C作CD⊥AB于点D,则AD=BD=又AC=AB=5.在Rt△ADC中,∴(3)若AB为边时,
∵以M,O,A,B为顶点的四边形是平行四边形
∴MO∥AB,MO=AB=5,
当点M在OB下方时,AM=BO=4,AM∥OB
∴点M(-4,-3)
当点M在OB上方时,OA=BM=3,OA∥BM
∴点M(4,3)
若AB为对角线时,
∵以M,O,A,B为顶点的四边形是平行四边形
∴AM∥OB,BM∥OA,
∴点M(4,-3)
综上所述:点M坐标为(-4,-3),(4,3),(4,-3).【点睛】考查了一次函数的应用,平行四边形的性质,等边三角形的性质,勾股定理的应用,解决本题的关键是分类讨论思想的应用.20、,【解析】
根据分式的减法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.【详解】解:,当时,原式.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)①;②见解析;(2)的长为或【解析】
(1)①根据正方形性质,求出;根据等腰三角形性质,求出的度数,即可求得.②根据正方形对称性得到;根据四边形内角和证出;利用等角对等边即可证出.(2)分情况讨论:①当点F在线段BC上时;②当点F在线段CB延长线上时;根据正方形的对称性,证出;再根据等腰三角形的性质,求出线段NC,BN;利用勾股定理,求出BE、BD,进而求出DE.【详解】解:(1)①为正方形,.又,.②证明:正方形关于对称,,.又,又,,.(2)①当点F在线段BC上时,过E作MN⊥BC,垂足为N,交AD于M,如图1所示:∴N是CF的中点,∴BF=1,∴CF=1又∵四边形CDMN是矩形∴为等腰直角三角形∴②当点F在线段CB延长线上时,如图2所示:过点E作MN⊥BC,垂足为N,交AD于M∵正方形ABCD关于BD对称又∵又∴FC=3∴∴∴,综上所述,的长为或【点睛】本题考查了三角形全等、等腰三角形的性质、三线合一、勾股定理等知识点;难点在(2),注意分情况讨论;本题难度较大,属于中考压轴题.22、(1)见解析;(2)【解析】
(1)根据平行四边形的性质证得AB=BE=AF,得到四边形ABEF是平行四边形,再根据邻边相等证得结论;(2)根据菱形的性质求得∠BAE=30°,OB=OF=1,再根据FG⊥BF求出∠G==30°,得到BG=4,根据勾股定理求出FG.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE平分∠BAD,∴∠DAE=∠BAE.∴∠AEB=∠BAE.∴AB=BE.同理:AB=AF.∴AF=BE,AF∥BE,∴四边形ABEF是平行四边形.又∵AB=BE,∴四边形ABEF是菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF,AE平分∠BAD,∵AB=2,∠BAD=60°,∴∠BAE=30°,∠FBE=∠ABF=60°,∴OB=OF=1,∴BF=2,又∵FG⊥BF,∴∠BFG==90°,∴∠G==30°,∴BG=4,∴.【点睛】此题考查平行四边形的性质,菱形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质.23、米【解析】
由题意得,在直角三角形中,知道了两直角边,运用勾股定理直接解答即可求出斜边.【详解】解:∵AC=4米,BC=3米,∠ACB=90°,
∴折断的部分长为=5,
∴折断前高度为5+3=8(米).【点睛】此题主要考查学生对勾股定理在实际生活中的运用能力.24、(1);;(2);【解析】
(1)先把左边的4移项到右边成-4,再配方,两边同时加32,左边得到完全平方,再得出两个一元一次方程进行解答;(2)先化成一元二次方程的一般式,得出a、b、c,计算b2-4ac判定根的情况,最后运用求根公式即可求解.【详解】解:(1)x2+6x+4=0x2+6x=-4x2+6x+9=-4+9(x+3)2=5;(2)5x2-3x=x+1,5x2-4x-1=0,b2-4ac=(-4)2-4×5×(-1)=36,,【点睛】本题主要考查了运用配方法、公式法解一元二次方程,运用公式法解方程时,要先把方程化为一般式,找到a、b、c的值,然后用b2-4ac判定根的情况,最后运用公式即可求解.25、(1)见解析;(2)将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)【解析】
(1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程设计合同标的工程质量
- 消费型股东合作的协议书 2篇
- 2024年二手车交易中的物流配送协议3篇
- 2024年度室内浮雕施工合同3篇
- 二零二四年度二手集装箱买卖合同的验收标准3篇
- 2024年度居间服务合同-工程安全监督3篇
- 2024年度东莞市环保工程承包合同
- 重阳节社区老人安全知识培训
- 2024年度建筑项目安全生产责任保险合同
- 六下20古诗两首课件
- 纸箱厂仓库工作流程
- 腹腔镜腹壁切口疝修补术
- 外墙保温装饰一体板施工方案
- 颅内压增高-课件
- 国有资产交易法律实务与疑难问题
- 2023年福建省莆田市初中毕业班质量检查语文试卷【含答案】
- STEAM教育,什么是steam课件
- 烟机设备修理基础知识考试复习题库大全-上(单选题汇总)
- 余华《活着》读书分享PPT
- 硬核赢创新智慧树知到答案章节测试2023年山东大学
- 燃气锅炉安装施工方案完整版
评论
0/150
提交评论