江苏省江都区第三中学2024届八年级下册数学期末综合测试模拟试题含解析_第1页
江苏省江都区第三中学2024届八年级下册数学期末综合测试模拟试题含解析_第2页
江苏省江都区第三中学2024届八年级下册数学期末综合测试模拟试题含解析_第3页
江苏省江都区第三中学2024届八年级下册数学期末综合测试模拟试题含解析_第4页
江苏省江都区第三中学2024届八年级下册数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省江都区第三中学2024届八年级下册数学期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.4,5,6 C.8,13,5 D.1,,12.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1003.满足不等式的正整数是()A.2.5 B. C.-2 D.54.下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点C.三角形的中线将三角形分成面积相等的两部分D.一组对边平行另一组对边相等的四边形是平行四边形5.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG最小值为()A. B. C. D.7.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是()A.32° B.35° C.36° D.40°8.下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2 C.y2=4x D.y=2x+19.对于反比例函数y=-的图象,下列说法不正确的是()A.经过点(1,-4) B.在第二、四象限 C.y随x的增大而增大 D.成中心对称10.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A.5元B.10元C.20元D.10元或20元11.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分B.测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等12.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B. C.4 D.6二、填空题(每题4分,共24分)13.如图,为直角三角形,其中,则的长为__________________________.14.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=_____.15.等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.16.小数0.00002l用科学记数法表示为_____.17.菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.18.如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集______.三、解答题(共78分)19.(8分)(1);(2)÷20.(8分)为引导学生广泛阅读文学名著,某校在七年级、八年级开展了读书知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(分),并对数据进行整理、描述和分析.下面给出了部分信息.七年级:7497968998746576727899729776997499739874八年级:7688936578948968955089888989779487889291平均数、中位数、众数如表所示:根据以上信息,回答下列问题:(1)______,______,______;(2)该校对读书知识竞赛成绩不少于80分的学生授予“阅读小能手”称号,请你估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有______人;(3)结合以上数据,你认为哪个年级读书知识竞赛的总体成绩较好,说明理由.21.(8分)已知=,求代数式的值.22.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于两点,其对称轴与轴交于点.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标;若不存在,请说明理由;(3)连接,在直线的下方的抛物线上,是否存在一点,使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.23.(10分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.(1)在图①中,判断和形状.(填空)_______________________________________(2)在图②中,判断四边形的形状,并说明理由.24.(10分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).25.(12分)计算:(1);(2)26.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.

参考答案一、选择题(每题4分,共48分)1、D【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为22+32≠42,所以不能组成直角三角形;B、因为52+42≠62,所以不能组成直角三角形;C、因为52+82≠132,所以不能组成直角三角形;D、因为12+12=()2,所以能组成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、A【解析】

利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.3、D【解析】

在取值范围内找到满足条件的正整数解即可.【详解】不等式的正整数解有无数个,四个选项中满足条件的只有5故选:D.【点睛】考查不等式的解,使不等式成立的未知数的值就是不等式的解.4、D【解析】

根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.【详解】解:A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形,所以A选项为真命题;B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;C.三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;D.一组对边平行且相等的四边形是平行四边形,所以D选项为假命题.故选D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、A【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像的性质:可知k>0,b>0,在一二三象限;k>0,b<0,在一三四象限;k<0,b>0,在一二四象限;k<0,b<0,在二三四象限.因此由图象经过第二、三、四象限,可判断得3-k<0,-k<0,解之得k>0,k>3,即k>3.故选A考点:一次函数的图像与性质6、D【解析】

如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.证明△ADP∽△DHG,推出∠DHG=∠DAP=定值,推出点G在射线HF上运动,推出当CG⊥HE时,CG的值最小,想办法求出CG即可.【详解】如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HE时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=3,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC==5,DH=,∴CH=,∴EH=,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选D.【点睛】本题考查旋转变换,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形核或全等三角形解决问题,属于中考选择题中的压轴题.7、C【解析】

设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.【详解】设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故选C.【点睛】本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.8、A【解析】

A选项:y=-0.1x,符合正比例函数的含义,故本选项正确.

B选项:y=2x2,自变量次数不为1,故本选项错误;

C选项:y2=4x,y不是x的函数,故本选项错误;

D选项:y=2x+1是一次函数,故本选项错误;

故选A.9、C【解析】

根据反比例函数的性质用排除法解答.【详解】A、把点(1,-4)代入反比例函数y=-得:1×(-4)=-4,故A选项正确;B、∵k=-4<0,∴图象在第二、四象限,故B选项正确;C、在同一象限内,y随x的增大而增大,故C选项不正确;D、反比例函数y=-的图象关于点O成中心对称,故D选项正确.故选:C.【点睛】本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.此题的易错点是在探讨函数增减性时没有注意应是在同一象限内.10、C【解析】

设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设每件衬衫应降价x元,则每天可销售(1+2x)件,根据题意得:(40-x)(1+2x)=110,解得:x1=10,x2=1.∵扩大销售,减少库存,∴x=1.故选C.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11、D【解析】

根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.【点睛】本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.12、A【解析】试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.

∵在直角△OCD中,∠COD=90°,OD=2,OC=6,

∴CD=,

∴PD+PA=PD+PC=CD=2.

∴PD+PA和的最小值是2.

故选A.二、填空题(每题4分,共24分)13、.【解析】

由∠B=90°,∠BAD=45°,根据直角三角形两锐角互余求得∠BDA=45°,因此AB=BD,由∠DAC=15°,根据三角形外角性质可求得∠C=30°,由AC=2,根据直角三角形中30°的角所对的直角边等于斜边的一半,求得AB=1,即BD=1,根据勾股定理求得BC=,从而得到CD的长.【详解】解:∵∠B=90°,∠BAD=45°,∴∠BDA=45°,AB=BD,∵∠DAC=15°,∴∠C=30°,∴AB=BD=AC=×2=1,∴BC===,∴CD=BC-BD=-1.故答案为-1.【点睛】本题考查了直角三角形两锐角互余的性质,30°的角所对的直角边等于斜边的一半,勾股定理等知识.14、20°【解析】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为20°.点睛:本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.15、12.【解析】

因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.【详解】解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;

当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;∴顶角的度数为80°或20°.故答案为80°或20°.【点睛】本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.16、2.1×10﹣1【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:小数0.00002l用科学记数法表示为2.1×10-1.

故答案为2.1×10-1.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、9或【解析】

如图,根据题意得:∠BAC=120°,易得∠ABC=60°,所以△ABC为等边三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性质可得边AB的长.【详解】∵四边形ABCD是菱形,∴AD∥BC,∠ABD=∠CBD,OA=OC,OB=OD,AC⊥BD,AB=BC,∵∠BAD=120°,∴∠ABC=60°,∴△ABC为等边三角形,如果AC=9,则AB=9,如果BD=9,则∠ABD=30°,OB=,∴OA=AB,在Rt△ABO中,∠AOB=90°,∴AB2=OA2+OB2,即AB2=(AB)2+()2,∴AB=3,综上,菱形的边长为9或3.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.注意分类讨论思想的运用.18、x>-1【解析】试题分析:根据题意可得即>,也就是函数在函数的上方,根据图象可得当x>-1时,函数在函数的上方.考点:一次函数与一元一次不等式的关系.三、解答题(共78分)19、(1)-45;(2)2+4.【解析】

(1)利用二次根式的乘法运算法则化简求出即可;(2)利用二次根式的除法运算法则化简求出即可.【详解】(1)==-18×=-45;(2)÷=(20-18+4)÷=()÷=2+4.【点睛】本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.20、(1)2,88.5,89;(2)460;(3)八年级读书知识竞赛的总体成绩较好,见解析.【解析】

(1)根据总数据可得a的值,根据中位数和众数的定义可得m和n的值;(2)分别计算该校七、八年级所有学生中获得“阅读小能手”称号的人数,相加可得结论;(3)根据平均数,众数和中位数这几方面的意义解答可得.【详解】解:(1)a=20-1-3-8-6=2,八年级20人的成绩排序后为:50,65,68,76,77,78,87,88,88,88,89,89,89,89,91,92,93,94,94,95,因为有20人,所以中位数为成绩排名第10和第11位的分数的平均数,观察成绩数据89分的人数最多,∴m==88.5,n=89,故答案为:2,88.5,89;(2),则估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有460人.故答案为:460;(3)∵八年级读书知识竞赛的总体成绩的众数高于七年级,且八年级的中位数89高于七年级的中位数74,说明八年级分数不低于89分的人数比七年级多,∴八年级读书知识竞赛的总体成绩较好.【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.21、【解析】

把x的值代入多项式进行计算即可.【详解】当=时,===【点睛】本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.22、(1),抛物线的对称轴是;(2)点坐标为.理由见解析;(3)在直线的下方的抛物线上存在点,使面积最大.点的坐标为.【解析】

(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式,再利用二次函数的性质可求出抛物线的对称轴;(2)连接交对称轴于点,此时的周长最小,利用二次函数图象上点的坐标特征可求出点的坐标,由点,B的坐标,利用待定系数法可求出直线AC的解析式,再利用一次函数图象上点的坐标特征可求出点P的坐标;(3)过点N作NE∥y轴交AC于点E,交x轴于点F,过点A作AD⊥NE于点D,设点N的坐标为(t,t2-t+4)(0<t<5),则点E的坐标为(t,-t+4),进而可得出NE的长,由三角形的面积公式结合S△CAN=S△NAE+S△NCE可得出S△CAN关于t的函数关系式,再利用二次函数的性质即可解决最值问题.【详解】(1)根据已知条件可设抛物线的解析式为,∴,∴抛物线的对称轴是;(2)点坐标为.理由如下:∵点(0,4),抛物线的对称轴是,∴点关于对称轴的对称点的坐标为(6,4),如图1,连接交对称轴于点,连接,此时的周长最小.设直线的解析式为,把(6,4),(1,0)代入得,解得,∴,∵点的横坐标为3,∴点的纵坐标为,∴所求点的坐标为.(3)在直线的下方的抛物线上存在点,使面积最大.设点的横坐标为,此时点,如图2,过点作轴交于;作于点,由点(0,4)和点(5,0)得直线的解析式为,把代入得,则,此时,∵,∴,∴当时,面积的最大值为,由得,∴点的坐标为.【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、轴对称-最短路径问题、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短,确定点P的位置;(3)利用三角形的面积公式结合S△CAN=S△NAE+S△NCE,找出S△CAN关于t的函数关系式.23、(1)和均为等腰三角形;(2)四边形为平行四边形,证明详见解析.【解析】

根据平行线的性质和折叠的性质解答即可;(2)由三角形中位线的性质可证,,由旋转的性质可知,从而,然后根据平行四边形的判定方法可证四边形是平行四边形.【详解】解:(1)和均为等腰三角形.∵DE∥BC,∴∠A′DE=∠BA′D,∠B=∠ADE,∵∠ADE=∠A′DE,∴∠B=∠BA′D,∴BD=A′D,∴为等腰三角形;同理可证CE=A′E,即为等腰三角形.(2)四边形为平行四边形.理由:、分别是、的中点,,.由旋转的性质可知,,四边形是平行四边形.【点睛】本题考查了折叠的性质,旋转的性质,三角形的中位线,平行线的性质,等腰三角形的判定,以及平行四边形的判定等知识,熟练掌握折叠的性质及旋转的性质是解答本题的关键.24、(1)众数162,中位数161.5;(2)161cm;(3).【解析】

(1)根据统计图中的数据可以求得这组数据的中位数和众数;(2)根据加权平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论