苏州市2024年数学八年级下册期末考试模拟试题含解析_第1页
苏州市2024年数学八年级下册期末考试模拟试题含解析_第2页
苏州市2024年数学八年级下册期末考试模拟试题含解析_第3页
苏州市2024年数学八年级下册期末考试模拟试题含解析_第4页
苏州市2024年数学八年级下册期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏州市2024年数学八年级下册期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如果三条线段的长a,b,c满足a2=c2-b2,则这三条线段组成的三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定2.如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于A.2 B. C.3 D.3.交警在一个路口统计的某个时段来往车辆的分布如条形图所示.请找出这些车辆速度的众数、中位数分别是()A.52,53 B.52,52 C.53,52 D.52,514.等式成立的x的取值范围在数轴上可表示为(

)A. B. C. D.5.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-36.ABCD是一块正方形场地,小华和小萌在AB上取一点E,测量得EC=30,EB=10,这块场地的对角线长是()A.10 B.30 C.40 D.507.在中,,,、、的对边分别是、、,则下列结论错误的是()A. B. C. D.8.如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误9.如图,在四边形中,动点从点开始沿的路径匀速前进到为止,在这个过程中,的面积随时间的变化关系用图象表示正确的是()A. B. C. D.10.《九章算术》记载“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=30步,NF=750步,则正方形的边长为()A.150步 B.200步 C.250步 D.300步二、填空题(每小题3分,共24分)11.已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,S△AOE=3,S△BOF=5,则▱ABCD的面积是_____.12.已知,则比较大小2_____3(填“<“或“>”)13.如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是_____.14.如图,在菱形中,点为上一点,,连接.若,则的度数为__________.15.已知点,关于x轴对称,则________.16.如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).17.如图,P是矩形ABCD内一点,,,,则当线段DP最短时,________.18.某校对n名学生的体育成绩统计如图所示,则n=_____人.三、解答题(共66分)19.(10分)学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:(1)设两家复印社每月复印任务为张,分别求出甲复印社的每月复印收费y甲(元)与乙复印社的每月复印收费y乙(元)与复印任务(张)之见的函数关系式.(2)乙复印社的每月承包费是多少?(3)当每月复印多少页时,两复印社实际收费相同?(4)如果每月复印页数是1200页,那么应选择哪个复印社.20.(6分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.21.(6分)如图,在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于点F.已知BEAB=23,22.(8分)如图,已知火车站的坐标为(2,2),文化宫的坐标为(-1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场,市场,超市的坐标;(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(-2,-2),(2,-2),请在图中标出A,B,C的位置.23.(8分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.24.(8分)对于某一函数给出如下定义:若存在实数,当其自变量的值为时,其函数值等于,则称为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度为零.例如,图1中的函数有0,1两个不变值,其不变长度等于1.(1)分别判断函数,有没有不变值?如果有,请写出其不变长度;(2)函数且,求其不变长度的取值范围;(3)记函数的图像为,将沿翻折后得到的函数图像记为,函数的图像由和两部分组成,若其不变长度满足,求的取值范围.25.(10分)甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件.乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为(个),甲加工零件的时间为(时),与之间的函数图象如图所示.(1)在乙追赶甲的过程中,求乙每小时加工零件的个数.(2)求甲提高加工速度后甲加工的零件数与之间的函数关系式.(3)当甲、乙两人相差12个零件时,直接写出甲加工零件的时间.26.(10分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出周长C的最小值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据“勾股定理的逆定理”结合已知条件分析判断即可.【详解】解:∵三条线段的长a,b,c满足a2=c2-b2,∴a2+b2=c2,∴这三条线段组成的三角形是直角三角形故选B.【点睛】本题考查熟知“若三角形的三边长分别为a、b、c,且满足a2+b2=c2,则该三角形是以c为斜边的直角三角形”是解答本题的关键.2、B【解析】

根据平行四边形性质证,△AEF≌△AEB,EF=EB,AB=AF=1,再证△DEF≌△CEB,得BC=DF,可得AF=AD+DF=AD+BC=2BC=1.【详解】解:因为,四边形ABCD是平行四边形,所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F因为,的平分线与DC交于点E,所以,∠FAE=∠BAE,∠AEB=∠AEF所以,△AEF≌△AEB所以,EF=EB,AB=AF=1所以,△DEF≌△CEB所以,BC=DF所以,AF=AD+DF=AD+BC=2BC=1所以,BC=2.1.故选B.【点睛】本题考核知识点:平行四边形、全等三角形.解题关键点:熟记平行四边形性质、全等三角形判定和性质.3、B【解析】

根据众数、中位数的意义,分别求出众数、中位数,再做出选择即可.【详解】车速出现次数最多的是52千米/时,因此车速的众数是52,一共调查27辆车,将车速从小到大排列后,处在中间的一个数是52,因此中位数是52,故选:B.【点睛】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是得出答案的前提.4、B【解析】

根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选:.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.5、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.6、C【解析】

根据勾股定理求出BC长,由正方形的性质可得对角线长.【详解】解:由正方形ABCD可知:AB=BC,∠ABC=在直角三角形EBC中,根据勾股定理得:BC2=E在直角三角形ABC中,根据勾股定理得:AC=A所以这块场地对角线长为40.故选:C【点睛】本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.7、D【解析】

根据直角三角形的性质得到c=1a,根据勾股定理计算,判断即可.【详解】解:∵∠C=90°,∠A=30°,

∴c=1a,A正确,不符合题意;

由勾股定理得,a1+b1=c1,B正确,不符合题意;

b==a,即a:b=1:,C正确,不符合题意;

∴b1=3a1,D错误,符合题意,

故选:D.【点睛】本题考查的是勾股定理、直角三角形的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.8、C【解析】

由甲乙的做法,根据菱形的判定方法可知正误.【详解】解:甲的作法如图所示,∵四边形ABCD是平行四边形∴AD∥BC∴AE∥CF,∠EAO=∠FCO又∵EF垂直平分AC∴AO=CO,AE=CE又∵∠AOE=∠COF∴ΔAOE≅ΔCOF(ASA)∴AE=CF∴四边形AFCE为平行四边形又∵AE=CE∴四边形AFCE为菱形所以甲的作法正确.乙的作法如图所示∵AD∥BC∴∠FAE=∠BEA∵AE平分∠BAD∴∠FAE=∠BAE∴∠BEA=∠BAE∴BA=BE同理可得AB=AF∴AF=BE又∵AF∥BE∴四边形ABEF为平行四边形∵AB=AF∴四边形ABEF为菱形所以乙的作法正确故选:C【点睛】本题考查了菱形的判定,熟练运用菱形的判定进行证明是解题的关键.9、C【解析】

根据点的运动过程可知:的底边为,而且始终不变,点到直线的距离为的高,根据高的变化即可判断与的函数图象.【详解】解:设点到直线的距离为,的面积为:,当在线段运动时,此时不断增大,也不端增大当在线段上运动时,此时不变,也不变,当在线段上运动时,此时不断减小,不断减少,又因为匀速行驶且,所以在线段上运动的时间大于在线段上运动的时间故选.【点睛】本题考查函数图象,解题的关键是根据点到直线的距离来判断与的关系,本题属于基础题型.10、D【解析】

根据题意,可知Rt△AEM∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=AD,AN=AB,∴AM=AN,由题意可得,Rt△AEM∽Rt△FAN,∴,即AM2=30×750=22500,解得:AM=150,∴AD=2AM=300步;故选:D.【点睛】本题考查相似三角形的应用、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.二、填空题(每小题3分,共24分)11、1【解析】

分析:利用平行四边形的性质可证明△AOF≌△COE,所以可得△COE的面积为3,进而可得△BOC的面积为8,又因为△BOC的面积=▱ABCD的面积,进而可得问题答案.详解::∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠BCA,∠AEF=∠CFE,又∵AO=CO,在△AOE与△COF中∴△AOE≌△COF∴△COEF的面积为3,∵S△BOF=5,∴△BOC的面积为8,∵△BOC的面积=▱ABCD的面积,∴▱ABCD的面积=4×8=1,故答案为1.点睛:本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点:①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.12、<【解析】

要使两个分式的和为零,则必须两个分式都为0,进而计算a,b的值,代入比较大小即可.【详解】解:∵+=0,∴a﹣3=0,2﹣b=0,解得a=3,b=2,∴2,,∴.故答案为:<【点睛】本题主要考查根式为零时参数的计算,这是考试的重点知识,应当熟练掌握.13、24【解析】

根据菱形的对角线互相垂直,利用勾股定理列式求出OA,再根据菱形的对角线互相平分求出AC,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】∵四边形ABCD是菱形,∴OB=OD=3,OA=OC,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:,∴AC=2OA=8,∴S菱形ABCD=×AC×BD=×6×8=24.故答案为:24.【点睛】此题考查菱形的性质,勾股定理求线段,菱形的面积有两种求法:①底乘以高;②对角线乘积的一半,解题中根据题中的已知条件选择合适的方法.14、18【解析】

由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形,∴AD=CD,∠A=∠BCD,CD∥AB,∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°,∵CD∥AB,∴∠CDE=∠DEA=72°,且DE=DC=DA,∴∠DCE=54°,∵∠DCB=∠DAE=72°,∴∠BCE=∠DCB-∠DCE=18°.故答案为:18.【点睛】本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.15、【解析】

根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x轴对称,

∴,

∴.

故答案为:.【点睛】此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.16、AD=BC.【解析】

直接利用平行四边形的判定方法直接得出答案.【详解】当AD∥BC,AD=BC时,四边形ABCD为平行四边形.故答案是AD=BC(答案不唯一).17、【解析】

因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.【详解】解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,

则AO=OP′=OB=AB=2,

∵AD=2,∠BAD=90°,

∴OD=2,∠ADC=∠AOD=∠ODC=45°,

∴DP′=OD-OP′=2-2,

过P′作P′E⊥CD于点E,则

P′E=DE=DP′=2-,

∴CE=CD-DE=+2,

∴CP′==.

故答案为.【点睛】本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.18、1【解析】

根据统计图中的数据,可以求得n的值,本题得以解决.【详解】解:由统计图可得,n=20+30+10=1(人),故答案为:1.【点睛】本题考查折线统计图,解答本题的关键是明确题意,提取统计图中的有效信息解答.三、解答题(共66分)19、(1),;(2)200;(3)800页;(4)应选择乙复印社.【解析】

(1)根据甲乙复印社的收费方式,结合函数图象列出解析式即可;(2)由函数图象可直接得出答案;(3)当时,求出x即可;(4)将x=1200分别代入两函数解析式进行计算,然后作出判断.【详解】解:(1)∵由甲复印社承接,按每100页40元计费;先按月付给乙复印社一定数额的承包费,则按每100页15元收费,∴,;(2)由函数图象可得:乙复印社的每月承包费是200元;(3)当时,即,解得:,答:当每月复印800页时,两复印社实际收费相同;(4)当x=1200时,(元),(元),∵380<480,∴应选择乙复印社.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息并准确识图,理解两复印社的收费情况与复印页数的关系是解题的关键.20、(1)证明见解析;(2)EF-FG=-1.【解析】分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.21、解:∵四边形ABCD是平行四边形,∴AE∥DC,∴△BEF∽△CDF∵AB=DC,BE:AB=2:3,∴BE:DC=2:3∴∴【解析】试题分析:根据平行四边形的性质,可证△BEF∽△CDF,由BE:AB=2:3,可证BE:DC=2:3,根据相似三角形的性质,可证S考点:相似三角形的判定与性质;平行四边形的性质点评:本题主要考查了相似三角形的判定和性质,平行四边形的性质等知识点22、(1)图形见解析(2)体育场(-2,5)市场(6,5)超市(4,-1)(3)图形见解析【解析】试题分析:(1)根据已知点的坐标确定原点的坐标,确定出平面直角坐标系;(2)根据(1)的图形写出个点的坐标;

(3)分别根据坐标写出位置名称.试题解析:(1)如图(2)体育场(-2,5)市场(6,5)超市(4,-1)(3)如图23、(1)①菱形,理由见解析;②AF=1;(2)秒.【解析】

(1)①先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;②根据勾股定理即可求AF的长;(2)分情况讨论可知,P点在BF上;Q点在ED上时;才能构成平行四边形,根据平行四边形的性质列出方程求解即可.【详解】(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=1,∴AF=1.(2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒1cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=1t,QA=12﹣4t,∴1t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.【点睛】本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.24、(1)不存在不变值;存在不变值,q=3;(2)0≤q≤2;(3)≤m≤4或m<-0.2.【解析】

(1)由题意得:y=x-3=x,无解,故不存在不变值;y=x2-2=x,解得:x=2或-1,即可求解;

(2)由题意得:y=x2-bx+1=x,解得:x=,即可求解;

(3)由题意得:函数G的不变点为:2m-1+、2m-1-、0、4;分x=m为G1的左侧、x=m为G1的右侧,两种情况分别求解即可.【详解】解:(1)由题意得:y=x-3=x,无解,故不存在不变值;

y=x2-2=x,解得:x=2或-1,故存在不变值,q=2-(-1)=3;

(2)由题意得:y=x2-bx+1=x,

解得:x=,

q=,1≤b≤3,

解得:0≤q≤2;

(3)由题意得:y=x2-3x沿x=m对翻折后,

新抛物线的顶点为(2m-,-),

则新函数G2的表达式为:y=x2-(4m-3)x+(4m2-6m),

当y=x时,整理得:x2-(4m-2)x+(4m2-6m)=0,

x=2m-1±,

即G2的不变点是2m-1+和2m-1-;

G1的不变点是:0和4;

故函数G的不变点为:2m-1+、2m-1-、0、4,

这4个不变点最大值的可能是2m-1+、4,最小值可能2m-1-、0,

----当x=m为G1对称轴x=的左侧时,

①当最大值为2m-1+时,

当最小值为2m-1-时,

即:0≤2m-1+-(2m-1-)≤4,

解得:0≤m≤;

当最小值为0时,

同理可得:0≤m≤;

②当最大值为4时,

最小值为2m-1-即可(最小值为0,符合条件),

即0≤4-(2m-1-)≤4,

解得:m=;

综上:0≤m≤;

----当x=m为G1对称轴x=的右侧时,

同理可得:≤m≤;

故:≤m≤4或m<-0.2.【点睛】本题考查的是二次函数综合运用,涉及到方程和不等式的求解,其中(3),不等式求解难度非常大,并要注意分类求解,避免遗漏.25、(1)在乙追赶甲的过程中,乙每小时加工零件60个;(2)();(3)甲加工零件的时间是时、时或时【解析】

(1)根据题意可以求出甲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论