版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年江苏省无锡市前洲中学八年级下册数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列事件是随机事件的是()A.购买一张福利彩票,中特等奖B.在一个标准大气压下,纯水加热到100℃,沸腾C.任意三角形的内角和为180°D.在一个仅装着白球和黑球的袋中摸出红球2.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.03.五边形的内角和为()A.360° B.540° C.720° D.900°4.数学课上,小明同学在练习本的相互平行的横隔线上先画了直线a,度量出∠1=112°,接着他准备在点A处画直线b.若要b∥a,则∠2的度数为()A.112° B.88° C.78° D.68°5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.菱形C.等腰直角三角形 D.平行四边形7.如图,在四边形中,,对角线、相交于点O,于点E,于点F,连接、,若,则下列结论不一定正确的是()A. B. C.为直角三角形 D.四边形是平行四边形8.下列计算中,正确的是()A.=5 B. C.=3 D.9.如图,已知反比例函数和一次函数的图象相交于点、两点,则不等式的解集为()A.或 B.C. D.或10.独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为3850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.2620(1﹣x)2=3850 B.2620(1+x)=3850C.2620(1+2x)=3850 D.2620(1+x)2=385011.若,则变形正确的是()A. B. C. D.12.在一幅长,宽的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的,设装饰纹边的宽度为,则可列方程为()A.B.C.D.二、填空题(每题4分,共24分)13.若方程x2+kx+9=0有两个相等的实数根,则k=_____.14.函数为任意实数)的图象必经过定点,则该点坐标为____.15.平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.16.如图,菱形由6个腰长为2,且全等的等腰梯形镶嵌而成,则菱形的对角线的长为_____.17.如图,在中,,,的面积是,边的垂直平分线分别交,边于点,.若点为边的中点,点为线段上一动点,则周长的最小值为__________.18.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_____.三、解答题(共78分)19.(8分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.20.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.(1)求证:△ACM≌△BCN;(2)求∠BDA的度数;(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.21.(8分)某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.(1)求2015年至2017年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的情况,该地区到2019年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.22.(10分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.23.(10分)在每年五月第二个星期日的母亲节和每年六月第三个星期日的父亲节这两天,很多青少年会精心准备小礼物和贺卡送给父母,以感谢父母的养育之恩.某商家看准商机,在今年四月底储备了母亲节贺卡A、B和父亲节贺卡C、D共2500张.(1)按照往年的经验,该商家今年母亲节贺卡的储备量至少应定为父亲节贺卡的1.5倍,求该商家今年四月底至多储备了多少张父亲节贺卡.(2)截至今年6月30日,母亲节贺卡A、B的销售总金额和父亲节贺卡C、D的销售总金额相同.已知母亲节贺卡A的销售单价为20元,共售出150张,贺卡B的销售单价为2元,共售出1000张;父亲节贺卡C的销售单价比贺卡A少m%,但是销售量与贺卡A相同,贺卡D的销售单价比贺卡B多4m%,销售量比贺卡B少m%,求m的值.24.(10分)如图,四边形ABCD是矩形,把矩形沿直线BD拆叠,点C落在点E处,连接DE,DE与AD交于点M.(1)证明四边形ABDE是等腰梯形;(2)写出等腰梯形ABDE与矩形ABCD的面积大小关系,并证明你的结论.25.(12分)已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.⑴求k,b的值;⑵若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.26.已知:如图,在△ABC中,D是AC上一点,,△BCD的周长是24cm.(1)求△ABC的周长;(2)求△BCD与△ABD的面积比.
参考答案一、选择题(每题4分,共48分)1、A【解析】选项A,购买一张福利彩票,中特等奖,是随机事件;选项B,在一个标准大气压下,纯水加热到100℃,沸腾,是必然事件;选项C,任意三角形的内角和为180°,是必然事件;选项D,在一个仅装着白球和黑球的袋中摸出红球,是不可能事件.故选A.2、D【解析】分析:根据根与系数的关系可得出x1x2=1,此题得解.详解:∵一元二次方程x2﹣2x=1的两根分别为x1和x2,∴x1x2=1.故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.3、B【解析】
n边形的内角和是(n﹣2)180°,由此即可求出答案.【详解】解:五边形的内角和是(5﹣2)×180°=540°.故选B.【点睛】本题考查了多边形的内角和,熟练掌握多边形内角和公式是解题的关键.4、D【解析】
根据平行线的性质,得出,根据平行线的性质,得出,即可得到,进而得到的度数.【详解】练习本的横隔线相互平行,,,,又,,即.故选:.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.5、B【解析】∵y轴表示当天爷爷离家的距离,X轴表示时间又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∴选项B中的图形满足条件.故选B.6、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、等边三角形,是轴对称图形,不是中心对称图形,故此选项错误;B、菱形,是轴对称图形,也是中心对称图形,故此选项正确;C、等腰直角三角形,是轴对称图形,不是中心对称图形,故此选项错误;D、平行四边形,不是轴对称图形,是中心对称图形,故此选项错误.故选B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】
根据平行四边形的性质与判定以及全等三角形的判定与性质分别分析得出即可.【详解】解:∵DE=BF,∴DF=BE,在Rt△DCF和Rt△BAE中,,∴Rt△DCF≌Rt△BAE(HL),∴CF=AE,故A正确;∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC,∵CF=AE,∴四边形CFAE是平行四边形,∴OE=OF,故B正确;∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE,∴CD∥AB,∵CD=AB,∴四边形ABCD是平行四边形,故D正确;无法证明为直角三角形,故C错误;故选:C.【点睛】本题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识;得出Rt△DCF≌Rt△BAE是解题关键.8、A【解析】
根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:∵=5,故选项A正确,∵不能合并,故选项B错误,∵,故选项C错误,∵,故选项D错误,故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.9、D【解析】
分析两个函数以交点为界,观察交点每一侧的图像可以得到结论.【详解】解:观察图像得:的解集是:或.故选D.【点睛】本题考查的是利用图像直接写不等式的解集问题,理解图像反映出来的函数值的变化对应的自变量的变化是解题关键.10、D【解析】试题解析:如果设该贫困户每年纯收入的平均增长率为x,那么根据题意得:列出方程为:故选D.11、D【解析】
根据不等式的性质即可判断.【详解】若,则x+2<y+2,故A错误;<,故B错误;x-2<y-2,故C错误;,故D正确;故选D.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质及应用.12、B【解析】
设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,根据矩形的面积公式结合硅藻泥风景画的面积是整个客厅装饰画面积的78%,即可得出关于x的一元二次方程,此题得解.【详解】解:设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,根据题意得:(200+2x)(1+2x)×78%=200×1.故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(每题4分,共24分)13、±1【解析】试题分析:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±1.故答案为±1.考点:根的判别式.14、(1,2)【解析】
先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【详解】解:函数可化为,当,即时,,该定点坐标为.故答案为:.【点睛】本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.15、22或1.【解析】
根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3时,CE=5,AB=3,则周长为22;②当BE=5时,CE=3,AB=5,则周长为1,故答案为:22或1.【点睛】本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.16、【解析】
根据图形可知∠ADC=2∠A,又两邻角互补,所以可以求出菱形的锐角内角是60°;再根据AD=AB可以得出梯形的上底边长等于腰长,即可求出梯形的下底边长,所以菱形的边长可得,线段AC便不难求出.【详解】根据图形可知∠ADC=2∠A,又∠ADC+∠A=180°,∴∠A=60°,∵AB=AD,∴梯形的上底边长=腰长=2,∴梯形的下底边长=4(可以利用过上底顶点作腰的平行线得出),∴AB=2+4=6,∴AC=2ABsin60°=2×6×=6.故答案为:6.【点睛】本题考查的是等腰梯形的性质,仔细观察图形得到角的关系和梯形的上底边长与腰的关系是解本题的关键.17、10【解析】
连接AD,根据等腰三角形的性质可得而AD⊥BC,根据三角形的面积求出AD的长,由EF是AC的垂直平分线可得当AD,EF交点M时,周长的最小值为AD+CD的长,故可求解.【详解】连接AD,∵,点为边的中点,∴AD⊥BC,∵,的面积是,∴AD=16×2÷4=8,∵EF是AC的垂直平分线,∴点C关于直线EF的对称点为A,∴AD的长为CM+MD的最小值,∴周长的最小值为AD+CD=8+BC=8+2=10.故填:10.【点睛】此题主要考查对称轴的应用,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.18、【解析】过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.解:如图,过点D作DE⊥DP交BC的延长线于E,
∵∠ADC=∠ABC=90°,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°,∠ADC=90°,
∴∠ADP+∠CDP=90°,
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°,
∴∠APD=∠E=90°,
在△ADP和△CDE中,∠ADP=∠CDE,∠APD=∠E,AD=CD,∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP=.
故答案为3.“点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.三、解答题(共78分)19、见解析,【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.【详解】证明:由折叠得:BC=EC,∠B=∠AEC,∵矩形ABCD,∴BC=AD,∠B=∠ADC=90°,∴EC=DA,∠AEC=∠ADC=90°,又∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS)∴∠DAE=∠ECD.【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.20、(1)见解析;(2)∠BDA=90°;(3)AM=.【解析】
(1)根据题意可知∠ACM=∠BCN,再利用SAS即可证明(2)根据(1)可求出∠ACE=∠BDE=90°,即可解答(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.可知AQ=QM=2a,QH=a,再求出a的值,利用勾股定理即可解答【详解】(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在△MAC和△NBC中,∴△MAC≌△NBC(SAS).(2)∵△MAC≌△NBC,∴∠NBC=∠MAC∵∠AEC=∠BED,∴∠ACE=∠BDE=90°,∴∠BDA=90°.(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.∵AQ=QM,∴∠QAE=∠AMQ=15°,∴∠EQH=30°,∴AQ=QM=2a,QH=a,∵∠ECH=60°,∴CH=a,∵AC=+1,∴2a+a+a=+1,∴a=,∵AM==(+)a=.【点睛】此题考查了三角形全等的性质和判定,勾股定理,解题关键在于先利用SAS判定三角形全等21、(1)10%(2)不能.【解析】
(1)增长前量(1+增长率)=增长后量,2015年2900万元为增长前量,2017年3509万元为增长后量,即可列出方程求解;(2)根据(1)中求得的增长率求出2019年该地区投入的教育经费.【详解】(1)设增长率为x,由题意得,解得(不合题意,舍去)答:2015年至2017年该地区投入教育经费的年平均增长率为10%.(2)2019年该地区投入的教育经费是(万元),4245.89答:按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费不能达到4250万元.【点睛】此题考查一元二次方程的实际应用,此类是增长率问题的一元二次方程,可以根据“增长前量(1+增长率)=增长后量”列得方程.22、(1)5立方米;(2)y=4x+3;(3)1,11.【解析】【分析】(1)用体积变化量除以时间变化量即可求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【详解】(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;(2)设y=kx+b(k≠0),把(3,15)(5.5,25)代入,则有,解得:,∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3;(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟,故答案为1,11.【点睛】本题考查了一次函数的应用,解题的关键是读懂图象、弄清题意、熟练应用一次函数的图象和性质以及在实际问题中比例系数k代表的意义.23、(1)该商家四月底至多储备1000张父亲节贺卡(2)m的值为:37.1【解析】
(1)设储备父亲节贺卡x张,母亲节贺卡的储备量至少应定为父亲节贺卡的1.1倍,得出不等式解答即可.(2)根据题意列出等式:20×110+2×1000=20(1﹣m%)×110+2(1+4m%)×1000(1﹣m%),算出结果.【详解】解:(1)设储备父亲节贺卡x张,依题知2100﹣x≥1.1x,∴x≤1000,答:该商家四月底至
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中等教育特色学校发展与示范建设考核试卷
- 施工现场安全教育机械安全篇考核试卷
- 环保的意义理论与实践考核试卷
- 炼铁生产中的作业安全操作规程考核试卷
- 危险品仓储应急救援演练考核试卷
- 拆船业在全球产业链中的位置考核试卷
- 可穿戴设备在健康管理中的实际效果考核试卷
- 信息系统的组织与企业管理考核试卷
- 低温仓储人员安全行为培训考核试卷
- DB11T 494.12-2013 人力资源服务规范 第12部分:劳务派遣
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- 2024浙江绍兴市人才发展集团第1批招聘4人(第1号)高频难、易错点500题模拟试题附带答案详解
- 幼儿园说课概述-课件
- 冠状动脉介入风险预测评分的临床应用
- 35导数在经济中的应用
- 苏科版(2024新版)七年级上册数学期中学情评估测试卷(含答案)
- 部编版《道德与法治》三年级上册第10课《父母多爱我》教学课件
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 气管插管操作规范(完整版)
- 2024-2025学年外研版英语八年级上册期末作文范文
- 四级劳动关系协调员试题库含答案
评论
0/150
提交评论