安徽省合肥市肥东四中学九级2024年八年级数学第二学期期末学业质量监测试题含解析_第1页
安徽省合肥市肥东四中学九级2024年八年级数学第二学期期末学业质量监测试题含解析_第2页
安徽省合肥市肥东四中学九级2024年八年级数学第二学期期末学业质量监测试题含解析_第3页
安徽省合肥市肥东四中学九级2024年八年级数学第二学期期末学业质量监测试题含解析_第4页
安徽省合肥市肥东四中学九级2024年八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市肥东四中学九级2024年八年级数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知多边形的内角和等于外角和,这个多边形的边数为()A. B. C. D.2.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长是()A.4cm B.cm C.2cm D.2cm3.如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为()A. B.C. D.4.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班 B.(2)班 C.(3)班 D.(4)班5.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A. B. C. D.6.下列计算中,运算错误的是()A. B.C. D.(-)2=37.在解分式方程+=2时,去分母后变形正确的是()A. B.C. D.8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.39.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数 B.中位数 C.众数 D.方差10.如图,在四边形中,,且,,给出以下判断:①四边形是菱形;②四边形的面积;③顺次连接四边形的四边中点得到的四边形是正方形;④将沿直线对折,点落在点处,连接并延长交于点,当时,点到直线的距离为;其中真确的是()A.①③ B.①④ C.②③ D.②④二、填空题(每小题3分,共24分)11.1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.12.如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是.13.若关于的一元二次方程有两个相等的实数根,则的值是__________.14.在五边形中,若,则__________.15.甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.16.若双曲线在第二、四象限,则直线y=kx+2不经过第_____象限。17.如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=_____.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为_____.三、解答题(共66分)19.(10分)某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?20.(6分)如图,是正方形的边上的动点,是边延长线上的一点,且,,设,.(1)当是等边三角形时,求的长;(2)求与的函数解析式,并写出它的定义域;(3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.21.(6分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米分钟,乙在地提速时距地面的高度为米;(2)直接写出甲距地面高度(米和(分之间的函数关系式;(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?22.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.23.(8分)如图,直线与直线相交于点.(1)求,的值;(2)根据图像直接写出时的取值范围;(3)垂直于轴的直线与直线,分别交于点,,若线段长为2,求的值.24.(8分)解方程(1)(2)x(3-2x)=4x-625.(10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨吨及以下超过17吨但不超过30吨的部分超过30吨的部分说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.(1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?26.(10分)在平面直角坐标系xOy中,直线过A(0,—3),B(1,2).求直线的表达式.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【详解】解:设多边形的边数为n,根据题意列方程得,

(n−2)•180°=360°,

∴n−2=2,

解得:n=1.

故选:B.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.2、C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=cm,在Rt△ABO中,,AB=2cm,BO=cm,所以AO=1cm,故菱形的另一条对角线AC长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.3、B【解析】

比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.【详解】解:k>0时,一次函数y=﹣kx+1的图象经过第一、二、四象限,反比例函数的两个分支分别位于第一、三象限,选项B符合;k<0时,一次函数y=﹣kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限,无选项符合.故选:B.【点睛】考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.4、D【解析】

直接根据方差的意义求解.【详解】∵S12=20.8,S22=15.3,S32=17,S42=9.6,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、B【解析】

由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.【详解】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长==故选:B.【点睛】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.6、C【解析】

根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断.【详解】A、=,所以A选项的计算正确;B、=,所以B选项的计算正确;C、与不能合并,所以C选项的计算错误;D、(-)2=3,所以D选项的计算正确.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.7、A【解析】

本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,

得:3-(x+2)=2(x-1).

故答案选A.【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.8、B【解析】

根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【详解】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点睛】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.9、C【解析】

服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;10、D【解析】

根据可判定①错误;根据AB=AD,BC=CD,可推出AC是线段BD的垂直平分线,可得②正确;现有条件不足以推出中点四边形是正方形,故③错误;连接AF,设点F到直线AB的距离为h,作出图形,求出h的值,可知④正确。可得正确选项。【详解】解:∵在四边形ABCD中,∴四边形不可能是菱形,故①错误;∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,∴四边形的面积,故②正确;由已知得顺次连接四边形的四边中点得到的四边形是矩形,不是正方形,故③错误;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,

连接AF,设点F到直线AB的距离为h,

由折叠可得,四边形ABED是菱形,AB=BE=5=AD=DE,BO=DO=4,

∴AO=EO=3,∵BF⊥CD,BF∥AD,∵S△ABF=S梯形ABFD-S△ADF,解得,故④正确故选:D【点睛】本题主要考查了菱形的判定与性质,线段垂直平分线的性质以及勾股定理的综合运用,第④个稍复杂一些,解决问题的关键是作出正确的图形进行计算.二、填空题(每小题3分,共24分)11、6174【解析】

用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,类似地进行上述变换,可知5次变换之后,此时开始停在一个数6174上.【详解】解:用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,

用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,

用6354的四个数字由大到小重新排列成一个四位数3.则3-3456=3087,

用3087的四个数字由大到小重新排列成一个四位数4.则4-378=8352,

用8352的四个数字由大到小重新排列成一个四位数5.则5-2358=6174,

用6174的四个数字由大到小重新排列成一个四位数6.则6-1467=6174…

可知7次变换之后,四位数最后都会停在一个确定的数6174上.

故答案为6174.【点睛】本题考查简单的合情推理.此类题可以选择一个具体的数根据题意进行计算,即可得到这个确定的数.12、6cm.【解析】试题分析:由∠ADE=∠C,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长为6cm.故答案为6cm.考点:相似三角形的判定与性质.13、1【解析】

因为关于的一元二次方程有两个相等的实数根,故,代入求解即可.【详解】根据题意可得:解得:m=1故答案为:1【点睛】本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.14、130°【解析】

首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.【详解】解:正五边形的内角和为(5-2)×180°=540°,∵∠A+∠B+∠C+∠D=410°,∴∠E=540°-410°=130°,故答案为:130°.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15、甲【解析】

根据根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。16、三【解析】分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.详解:∵反比例函数在二、四象限,∴k<0,∴y=kx+2经过一、二、四象限,即不经过第三象限.点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.17、1【解析】

由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,

∴BC=AD=8,

∵点E、F分别是BD、CD的中点,

∴EF=BC=×8=1.故答案为1.【点睛】此题考查了平行四边形的性质与三角形中位线的性质.熟练掌握相关性质是解题关键.18、1【解析】分析:由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.详解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=1,∴S四边形AFBD=1.故答案为1点睛:本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.三、解答题(共66分)19、(1)药物燃烧时y关于x的函数关系式为:;药物燃烧后y关于x的函数关系式为:;(2)至少需要15分钟后学生方能回到教室;(3)此次消毒有效.【解析】

(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可;药物燃烧后,设出y与x之间的解析式,把点(6,4)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x即可判断;(3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,不小于9就有效.【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1≠0),代入(6,4)得:4=6k1,解得:,∴药物燃烧时y关于x的函数关系式为:;设药物燃烧后y关于x的函数关系式为,代入(6,4)得,解得:k2=24,∴药物燃烧后y关于x的函数关系式为:;(2)将y=1.6代入,解得:x=15,所以从消毒开始,至少需要15分钟后学生方能回到教室;(3)把y=2代入,得:x=3,把y=2代入,得:x=12,∵12−3=9,所以此次消毒有效.【点睛】本题考查了一次函数和反比例函数的综合应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20、(1);(1);(3)答案见解析.【解析】

(1)当△BEF是等边三角形时,有∠ABE=∠ABC-∠EBC=90°-60°=30°,则可解Rt△ABE,求得BF即BE的长.(1)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.即y1=(y-x)1+111.故可求得y与x的关系.(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=11,有FA′=EF-A′E=y-x=11,故可由(1)得到的y与x的关系式建立方程组求得AE的值.【详解】解:(1)当是等边三角形时,,∵,∴,∴;(1)作,垂足为点,根据题意,得,,.∴.∴所求的函数解析式为;(3)∵,∴点落在上,∴,,∴要使成为等腰三角形,必须使.而,,∴,由(1)关系式可得:,整理得,解得,经检验:都原方程的根,但不符合题意,舍去,所以当时,为等要三角形.【点睛】本题利用了等边三角形和正方形、矩形、等腰三角形的性质,勾股定理求解.21、(1)10;30;(2);(3)135米.【解析】

(1)甲的速度=(300-100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;

(2)根据甲登山的速度以及图象直接写出甲距地面高度y(米)和x(分)之间的函数关系式;

(3)求出乙提速后y和x之间的函数关系式,再与(2)联立组成方程组解答即可.【详解】解:(1)甲的速度为:米分,根据图中信息知道乙一分的时间,走了15米,那么2分时,将走30米;故答案为:10;30;(2);(3)乙提速后速度为:(米秒),由,得,设乙提速后与的函数关系是,把,代入得,解得,乙提速后与的函数关系是,由,解得,(米,答:登山6.5分钟时,乙追上了甲,此时乙距地的高度为135米.【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.22、(1)P(﹣3,1);(2)Q(1,0)或(5,0);(3)0<m<1.【解析】

(1)根据两直线相交的性质进行作答.(2)根据三角形面积计算方式进行作答.(3)先做出直线经过O点、B点的讨论,再结合题意进行作答.【详解】(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,1).(2)设Q(m,0),由题意:•|m﹣3|•1=1,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=1,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<1.【点睛】本题考查了两直线相交的相关性质和三角形面积计算方式及与直线的综合运用,熟练掌握两直线相交的相关性质和三角形面积计算方式及与直线的综合运用是本题解题关键.23、(1),;(2);(3)或【解析】

(1)将点代入到直线中,即可求出b的值,然后将点P的坐标代入直线中即可求出m的值;(2)根据图象即可得出结论;(3)分别用含a的式子表示出点C和点D的纵坐标,再根据CD的长和两点之间的距离公式列出方程即可求出a.【详解】解:(1)∵点在直线上∴∵点在直线上,∴∴(2)由图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论