安徽省合肥庐阳区六校联考2024届八年级数学第二学期期末经典模拟试题含解析_第1页
安徽省合肥庐阳区六校联考2024届八年级数学第二学期期末经典模拟试题含解析_第2页
安徽省合肥庐阳区六校联考2024届八年级数学第二学期期末经典模拟试题含解析_第3页
安徽省合肥庐阳区六校联考2024届八年级数学第二学期期末经典模拟试题含解析_第4页
安徽省合肥庐阳区六校联考2024届八年级数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥庐阳区六校联考2024届八年级数学第二学期期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列交通标志图案中,是中心对称图形的是()A. B. C. D.2.已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是()A. B.C. D.3.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是()A. B.C.或 D.或4.如图,正方形ABCD的边长为1,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为()A. B. C. D.5.在平面直角坐标系中,点M(﹣2,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在直角坐标系中,点关于原点对称的点为,则点的坐标是()A. B. C. D.7.已知一次函数.若随的增大而增大,则的取值范围是()A. B. C. D.8.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8 B.5,6,8 C.,, D.4,5,69.四边形的内角和为()A.180° B.360° C.540° D.720°10.以下说法正确的是()A.在367人中至少有两个人的生日相同;B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是二、填空题(每小题3分,共24分)11.若最简二次根式与能合并成一项,则a=_____.12.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______13.因式分解:.14.如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.15.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;16.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.17.如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________18.如图,在数轴上点A表示的实数是_____________.三、解答题(共66分)19.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?20.(6分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立。(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)21.(6分)计算:÷+×﹣.22.(8分)问题情境:平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.数学探究:点C的坐标为______;求点E的坐标及直线BE的函数关系式;若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?若存在,直接写出相应的点Q的坐标;若不存在,说明理由.23.(8分)四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.(1)如图,求证:矩形是正方形;(2)当线段与正方形的某条边的夹角是时,求的度数.24.(8分)(1)发现.①;②;③;……写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.25.(10分)如图,为等边三角形,,相交于点,于点,(1)求证:(2)求的度数.26.(10分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:应试者面试成绩笔试成绩才艺甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据中心对称图形的概念,分别判断即可.【详解】解:A、B、D不是中心对称图形,C是中心对称图形.故选C.点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【解析】试题分析:根据已知条件“点(k,b)为第四象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=kx+b的图象所经过的象限.解:∵点(k,b)为第四象限内的点,∴k>0,b<0,∴一次函数y=kx+b的图象经过第一、三象限,且与y轴交于负半轴,观察选项,B选项符合题意.故选B.考点:一次函数的图象.3、C【解析】

先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】四边形OABC是正方形,由题意,分以下两种情况:(1)如图,把逆时针旋转,此时旋转后点B的对应点落在y轴上,旋转后点D的对应点落在第一象限由旋转的性质得:点的坐标为(2)如图,把顺时针旋转,此时旋转后点B的对应点与原点O重合,旋转后点D的对应点落在x轴负半轴上由旋转的性质得:点的坐标为综上,旋转后点D的对应点的坐标为或故选:C.【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.4、B【解析】

根据题意求出面积标记为S2的等腰直角三角形的直角边长,得到S2,同理求出S3,根据规律解答.【详解】∵正方形ABCD的边长为1,∴面积标记为S2的等腰直角三角形的直角边长为,则S2=面积标记为S3的等腰直角三角形的直角边长为×=,则S3=……则S2018的值为:,故选:B.【点睛】本题考查的是勾股定理、正方形的性质,根据勾股定理求出等腰直角三角形的边长是解题的关键.5、B【解析】∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.6、B【解析】

根据坐标系中关于原点对称的点的坐标特征:原坐标点为,关于原点对称:横纵坐标值都变为原值的相反数,即对称点为可得答案.【详解】解:关于原点对称的点的坐标特征:横纵坐标值都变为原值的相反数,所以点有关于原点O的对称点Q的坐标为(-2,-1).故选:B【点睛】本题考查了对称与坐标.设原坐标点为,坐标系中关于对称的问题分为三类:1.关于轴对称:横坐标值不变仍旧为,纵坐标值变为,即对称点为;2.关于轴对称:纵坐标值不变仍旧为,横坐标值变为即对称点为;3.关于原点对称:横纵坐标值都变为原值的相反数,即对称点为.熟练掌握变化规律是解题关键.7、B【解析】

∵随的增大而增大,∴,,故选B.8、C【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】,,,能组成直角三角形的一组数是、、.故选:.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、B【解析】

解:四边形的内角和=(4-2)•180°=360°故选B.10、A【解析】

解:B.摸奖活动中奖是一个随机事件,因此,摸100次奖是否中奖也是随机事件;C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是故选A.【点睛】本题考查随机事件.二、填空题(每小题3分,共24分)11、2【解析】

根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:,由最简二次根式与能合并成一项,得a+2=2.解得a=2.故答案是:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.12、8【解析】

根据多边形内角和公式可知n边形的内角和为(n-2)·180º,n边形的外角和为360°,再根据n边形的每个内角都等于其外角的3倍列出关于n的方程,求出n的值即可.【详解】解:∵n边形的内角和为(n-2)·180º,外角和为360°,n边形的每个内角都等于其外角的3倍,∴(n-2)·180º=360°×3,解得:n=8.故答案为:8.【点睛】本题考查的是多边形的内角与外角的关系的应用,明确多边形一个内角与外角互补和外角和的特征是解题的关键.13、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.14、【解析】

如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.【详解】解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.

∵AB=AC=4,,

∴CH=1,AH=NB=,BC=2,

∵AM∥BC,

∴∠M=∠DBC,

在△ADM和△CDB中,,

∴△ADM≌△CDB(AAS),

∴AM=BC=2,DM=BD,

在RT△BMN中,∵BN=,MN=3,

∴,

∴BD=DM=,

∵BC=CD=BE=DE=2,

∴四边形EBCD是菱形,

∴EC⊥BD,BO=OD=,EO=OC,

∵AD=DC,

∴AE∥OD,AE=2OD=.

故答案为.【点睛】本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.15、【解析】首先确定不等式的解,然后根据有确定a的取值范围,再利用概率公式求解即可.解:解关于x不等式得,∵关于x不等式有实数解,∴解得a<1.∴使关于x不等式有实数解的概率为.故答案为“点睛”本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,期中事件A出现m种结果,那么事件A的概率P(A)=.16、4cm【解析】

根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.【详解】解:∵四边形ABCD是平行四边形,

∴AO=OC,OD=OB,

又∵AC=10cm,BD=6cm,

∴AO=5cm,DO=3cm,【点睛】本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.17、;【解析】

观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.【详解】观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.故答案为【点睛】本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k<0时,随增大而减小.18、【解析】

如图在直角三角形中的斜边长为,因为斜边长即为半径长,且OA为半径,所以OA=,即A表示的实数是.【详解】由题意得,OA=,∵点A在原点的左边,∴点A表示的实数是-.故答案为-.【点睛】本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA的长是解答本题的关键.三、解答题(共66分)19、(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.20、(1)①PE=PB,②PE⊥PB;(2)成立,理由见解析(3)①PE=PB,②PE⊥PB.【解析】

(1)根据正方形的性质和全等三角形的判定定理可证△PDC≅△PBC,推出PB=PD=PE,∠PDE=180°−∠PBC=∠PED,求出∠PEC+∠PBC=180°,求出∠EPB的度数即可(2)证明方法同(1),可得PE=PB,PE⊥PB(3)证明方法同(1),可得PE=PB,PE⊥PB【详解】(1)①PE=PB,②PE⊥PB.(2)(1)中的结论成立。①∵四边形ABCD是正方形,AC为对角线,∴CD=CB,∠ACD=∠ACB,又PC=PC,∴△PDC≌△PBC,∴PD=PB,∵PE=PD,∴PE=PB,②:由①,得△PDC≌△PBC,∴∠PDC=∠PBC.又∵PE=PD,∴∠PDE=∠PED.∴∠PDE+∠PDC=∠PEC+∠PBC=180°,∴∠EPB=360°−(∠PEC+∠PBC+∠DCB)=90°,∴PE⊥PB.(3)如图所示:结论:①PE=PB,②PE⊥PB.【点睛】此题考查正方形的性质,垂线,全等三角形的判定与性质,解题关键在于利用全等三角形的性质进行求证21、.【解析】

先进行二次根式化简和乘除运算,然后再进行加减即可.【详解】解:原式=4﹣.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22、(1)(10,6);(2)),;(3)见解析.【解析】

(1)根据矩形性质可得到C的坐标;(2)设,由折叠知,,,在中,根据勾股定理得,,,在中,根据勾股定理得,,即,解得,可得;由待定系数法可求直线BE的解析式;(3)存在,理由:由知,,

,设,分两种情况分析:当BQ为的对角线时;当BQ为边时.【详解】解:四边形OBCD是矩形,

,,

故答案为;

四边形OBCD是矩形,

,,,

设,

由折叠知,,,

在中,根据勾股定理得,,

在中,根据勾股定理得,,

设直线BE的函数关系式为,

直线BE的函数关系式为;

存在,理由:由知,,

能使以A,B,P,Q为顶点的四边形是平行四边形,

当BQ为的对角线时,

点B,P在x轴,

的纵坐标等于点A的纵坐标6,

点Q在直线BE:上,

当BQ为边时,

与BP互相平分,

设,

即:直线BE上是存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形,点或.【点睛】本题考核知识点:一次函数的综合运用.解题关键点:熟记一次函数性质和特殊平行四边形的性质和判定.23、∠EFC=125°或145°.【解析】

(1)首先作EP⊥CD于P,EQ⊥BC于Q,由∠DCA=∠BCA,得出EQ=EP,再由∠QEF+∠FEC=45°,得出∠PED+∠FEC=45°,进而得出∠QEF=∠PED,即可判定Rt△EQF≌Rt△EPD,得出EF=ED,即可得证;(2)分类讨论:①当DE与AD的夹角为35°时,∠EFC=125°;②当DE与DC的夹角为35°时,∠EFC=145°,即可得解.【详解】(1)作EP⊥CD于P,EQ⊥BC于Q,如图所示∵∠DCA=∠BCA∴EQ=EP,∵∠QEF+∠FEP=90°,∠PED+∠FEP=90°,∴∠QEF=∠PED在Rt△EQF和Rt△EPD中,∴Rt△EQF≌Rt△EPD∴EF=ED∴矩形DEFG是正方形;(2)①当DE与AD的夹角为35°时,∠DEP=∠QEF=35°,∴∠EFQ=90°-35°=55°,∠EFC=180°-55°=125°;②当DE与DC的夹角为35°时,∠DEP=∠QEF=55°,∴∠EFQ=90°-55°=35°,∠EFC=180°-35°=145°;综上所述,∠EFC=125°或145°.【点睛】此题主要考查正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论