版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
如皋八校联考2024年数学八年级下册期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.将分式方程化为整式方程,方程两边可以同时乘()A.x﹣2 B.x C.2(x﹣2) D.x(x﹣2)2.在函数中的取值范围是()A. B. C. D.3.如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是()A.1 B.2 C.3 D.44.今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是()A.33℃33℃ B.33℃32℃ C.34℃33℃ D.35℃33℃5.某水资源保护组织对邢台某小区的居民进行节约水资源的问卷调查.某居民在问卷的选项代号上画“√”,这个过程是收集数据中的()A.确定调查范围 B.汇总调查数据C.实施调查 D.明确调查问题6.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是红球 B.至少有1个球是白球C.至少有2个球是红球 D.至少有2个球是白球7.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.8.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为()A.6 B.5 C.4 D.39.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某校八一班同学的身高情况进行调查C.对某校的卫生死角进行调查D.对全县中学生目前的睡眠情况进行调查10.在下列条件中能判定四边形ABCD是平行四边形的是()A.AB=BC,AD=DC B.AB//CD,AD=BCC.AB//CD,∠B=∠D D.∠A=∠B,∠C=∠D11.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.12.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为A. B.C. D.二、填空题(每题4分,共24分)13.在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)14.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.15.如图,∠A=∠D=90°,请添加一个条件:_____,使得△ABC≌△DCB.16.若整数m满足,且,则m的值为___________.17.因式分解:.18.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.三、解答题(共78分)19.(8分)已知x=,y=.(1)x+y=,xy=;(2)求x3y+xy3的值.20.(8分)已知关于x的一元二次方程(m为常数)(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m的值及方程的另一个根.21.(8分)年“双十—”来临之际,某网点以每件元的价格购进件衬衫以每件元的价格迅速售罄,所以该网店第二个月再次购进一批同款衬衫迎接“双十一”,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的倍,该批衬衫仍以每件元销售,十二月十二日下午六点,商店对剩余的件衬衫以每件的价格一次性清仓销售,商店出售这两批衬衫共盈利元,设第二批衬衫进价的增长率为.(1)第二批衬衫进价为____________元,购进的数量为_____________件.(都用含的代数式表示)(2)求的值.22.(10分)一次函数的图象经过点.(1)求出这个一次函数的解析式;(2)求把该函数图象向下平移1个单位长度后得到的函数图象的解析式.23.(10分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别直接写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.24.(10分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)扇形统计图中D所在扇形的圆心角为;(3)将上面的条形统计图补充完整;(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.25.(12分)计算:.26.化简并求值:,其中x=﹣1.
参考答案一、选择题(每题4分,共48分)1、D【解析】
找出两个分式的公分母即可【详解】分式方程化为整式方程,方程两边可以同时乘x(x﹣2),故选D【点睛】本题考查公分母有关知识点,基础知识牢固是解题关键2、C【解析】
根据分母不等于0列式计算即可得解.【详解】根据题意得,,
解得.
故选C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.3、D【解析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.【详解】∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形.∵AD=DC,∴四边形AECD是菱形,∴AE=EC=CD=AD=2,∴∠2=∠1.∵∠1=∠2,∴∠1=∠2=∠1.∵∠ABC=90°,∴∠1+∠2+∠1=90°,∴∠1=∠2=∠1=10°,∴BE=AE,AC=2AB.本答案正确;∴BE=1,在Rt△ABE中,由勾股定理,得AB=.本答案正确;∵O是AC的中点,∠ABC=90°,∴BO=AO=CO=AC.∵∠1=∠2=∠1=10°,∴∠BAO=60°,∴△ABO为等边三角形.∵∠1=∠2,∴AE⊥BO.本答案正确;∵S△ADC=S△AEC=,∵CE=2,BE=1,∴CE=2BE,∴S△ACE=,∴S△ACE=2S△ABE,∴S△ADC=2S△ABE.本答案正确.∴正确的个数有4个.故选D.【点睛】本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键4、A【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中33℃出现三次,出现的次数最多,故这组数据的众数为33℃.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为31℃,32℃,32℃,33℃,33℃,33℃,34℃,34℃,35℃,35℃,∴中位数是按从小到大排列后第5,6个数的平均数,为:33℃.故选A.5、C【解析】
根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.【详解】解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,故选:C.【点睛】本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.6、B【解析】A.至少有1个球是红球是随机事件,选项错误;B.至少有1个球是白球是必然事件,选项正确;C.至少有2个球是红球是随机事件,选项错误;D.至少有2个球是白球是随机事件,选项错误.故选B.7、C【解析】
根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.8、C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD==4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.9、D【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,判断即可.【详解】解:A、审核书稿中的错别字适合全面调查;B、对某校八一班同学的身高情况进行调查适合全面调查;C、对某校的卫生死角进行调查适合全面调查;D、对全县中学生目前的睡眠情况进行调查适合抽样调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、C【解析】
A、AB=BC,AD=DC,不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB//CD,∠B=∠D能判定四边形ABCD是平行四边形,故此选项正确;D、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;故选C.11、C【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.12、B【解析】试题分析:由设原计划每天加工x套运动服,得采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天。根据关键描述语:“共用了18天完成任务”得等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18。从而,列方程。故选B。二、填空题(每题4分,共24分)13、大于【解析】
分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.【详解】∵共有球:2+3+5=10个,∴P白球==,P红球==,∵>,∴摸出白球可能性大于摸出红球可能性.故答案为:大于【点睛】本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.14、+1.【解析】分析:根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.详解:∵阴影部分的面积与正方形ABCD的面积之比为2:1,∴阴影部分的面积为×9=6,∴空白部分的面积为9-6=1,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×1=,设BG=a,CG=b,则ab=,又∵a2+b2=12,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+1,故答案为+1.点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.15、∠ABC=∠DCB.【解析】
有一个直角∠A=∠D=90°相等,有一个公共边相等,可以加角,还可以加边,都行,这里我们选择加角∠ABC=∠DCB【详解】解:因为∠A=∠D=90°,BC=CB,∠ABC=∠DCB,所以△ABC≌△DCB,故条件成立【点睛】本题主要考查三角形全等16、,,.【解析】
由二次根式的性质,得到,结合,即可求出整数m的值.【详解】解:∵,∴,∴,∵,∴,∴整数m的值为:,,;故答案为:,,.【点睛】本题考查了二次根式的性质,以及解一元一次不等式,解题的关键是熟练掌握二次根式的性质,正确得到m的取值范围.17、【解析】
解:=;故答案为18、3【解析】
由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6,在Rt△ADE中,根据勾股定理求得AD的长即可.【详解】∵纸片ABCD为矩形,∴AB=CD=6,∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,∴AE=AB=6,∵E为DC的中点,∴DE=3,在Rt△ADE中,AE=6,DE=3,由勾股定理可得,AD=故答案为:.【点睛】本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键.三、解答题(共78分)19、(1)2,1;(2)10.【解析】
(1)将x、y的值分别代入两个式子,利用二次根式的运算法则进行计算即可;(2)原式先进行变形,继而利用整体思想将(1)中的结果代入进行计算即可.【详解】(1)∵x=,y=+,∴x+y=(-)+(+)=2,xy=(-)×(+)=3-2=1,故答案为2,1;(2)x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×[(2)2-2×1]=10.【点睛】本题考查了二次根式的混合运算,涉及了代数式求值,因式分解,完全平方公式的变形等,正确把握相关的运算法则是解题的关键.20、(1)见解析;(2)即m的值为0,方程的另一个根为0.【解析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=m,最终解出关于t和m的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,根据题意得2+t=,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.21、(1),;(2)【解析】
(1)根据题意列出对应的代数式即可.(2)根据题意列出方程,求解即可.【详解】(1)由题意得,第二批衬衫进价为元,购进的数量为件.故答案为:;.(2)第一批利润:(元),第二批利润:(元),,整理得,(舍)增长率为【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.22、(1),(2).【解析】
(1)把点(-1,2)代入即可求解;(2)根据一次函数的平移性质即可求解.【详解】(1)把点(-1,2)代入即2=-k+4解得k=2,∴一次函数为(2)把向下平移一个单位得到的函数为【点睛】此题主要考查一次函数的图像
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术研发合作合同标的与研发内容3篇
- 爱国卫生月班会活动
- 2024二手物流设备买卖及仓储服务合同3篇
- 如何调节血脂水平
- 《奎屯天合精细化工》课件
- 社区护理外出培训
- 人教版道德与法治三年级下册《第二单元 我在这里长大》大单元 (5 我的家在这里)(计划二课时)(第一课时)(热爱这里的一草一木)教学设计2022课标
- 全程房地产项目2024年度管理顾问咨询合同
- 2024年度卫星通信技术与应用开发合同2篇
- 酒店厨房承包协议书范本
- 也是冬天也是春天:升级彩插版
- 广播电视编导专业大学生职业生涯规划书
- 2023年12月英语六级真题及参考答案
- Unit+5+The+Monarchs+Journey+Language+points+课件-【知识精讲精研】高中英语外研版(2019)必修第一册+
- 高考日语副助词默写单
- 高一政治学科期末考试质量分析报告(7篇)
- 项目立项增资申请书
- 中国近现代史纲要社会实践报告十二篇
- 小学期中表彰大会活动方案
- 基于单元主题意义开展的小学英语项目化学习 论文
- 万用表使用方法-完整版课件PPT
评论
0/150
提交评论