版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省佛山市顺德区数学八年级下册期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,点在坐标轴上,是的中点,四边形是矩形,四边形是正方形,若点的坐标为,则点的坐标为()A. B. C. D.2.如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为()A.8cm B.16cm C.cm D.32cm3.已知,,则的值为()A.-2 B.1 C.-1 D.24.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A.πcm2 B.4cm2 C.cm2 D.cm25.八年级(1)班“环保小组的5位同学在一次活动中捡废弃塑料袋的个数分别为:16,16,4,6,1.这组数据的中位数、众数分别为()A.1,16 B.4,16 C.6,16 D.10,166.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40° B.36° C.30° D.25°7.在平面直角坐标系中,点M(2019,–2019)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.下列代数式属于分式的是()A. B.3y C. D.+y9.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.10.分式方程的解为()A. B. C. D.11.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁12.下列各组图形中不是位似图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为_____.14.如图,O为数轴原点,数轴上点A表示的数是3,AB⊥OA,线段AB长为2,以O为圆心,OB为半径画弧交数轴于点C.则数轴上表示点C的数为_________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____17.如图,在△ABC中,∠ABC=90°,∠ACB=30°,D是BC上的一点,且知AC=20,CD=10﹣6,则AD=_____.18.如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.三、解答题(共78分)19.(8分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.20.(8分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.21.(8分)2017年5月14日——5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?22.(10分)计算(1)(﹣)0++|2﹣|(2)(﹣)÷+(2+)(2﹣)23.(10分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人漱养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)本次调查的学生人数为______人;(2)求本次所调查学生读书本数的众数,中位数;(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?24.(10分)如图1,在正方形ABCD中,点E、F分别是边BC、CD上的点,且CE=CF,连接AE,AF,取AE的中点M,EF的中点N,连接BM,MN.(1)请判断线段BM与MN的数量关系和位置关系,并予以证明.(2)如图2,若点E在CB的延长线上,点F在CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.25.(12分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次又用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?26.(1)(2)
参考答案一、选择题(每题4分,共48分)1、D【解析】
过点D作DH⊥y轴,交y轴于H,根据矩形和正方形的性质可得∠EOF=∠BCF=∠HDE=90°,EF=BF=ED,BC=OA,根据角的和差故关系可得∠FBC=∠OFE=∠HED,∠BFC=∠OEF=∠HDE,利用ASA可证明△OFE≌△CBF≌△HDE,可得FC=OE=HD,BC=OF=HE,由点E为OA中点可得OF=2FC,即可求出FC的长,进而可得HE的长,即可求出OH的长,即可得点D坐标.【详解】过点D作DH⊥y轴,交y轴于H,∵四边形是矩形,四边形是正方形,∴∠EOF=∠BCF=∠HDE=∠EFB=90°,EF=BF=ED,BC=OA,∴∠OFE+∠BFC=90°,∠FBC+∠BFC=90°,∴∠OFE=∠FBC,同理:∠OEF=∠BFC,在△OEF和△CFB中,,∴BC=OF=OA,FC=OE,∵点E为OA中点,∴OA=2OE,∴OF=2OE,∴OC=3OE,∵点C坐标为(3,0),∴OC=3,∴OE=1,OF=2,同理:△HDE≌△OEF,∴HD=OE=1,HE=OF=2,∴OH=OE+HE=3,∴点D坐标为(1,3),故选:D.【点睛】本题考查正方形的性质、矩形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.2、D【解析】
根据菱形的性质可知AO=OC,继而根据中位线定理求得BC长,再根据菱形的四条边相等即可求得答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AE=BE,∴BC=2EO=2×4cm=8cm,即AB=BC=CD=AD=8cm,即菱形ABCD的周长为32cm,故选D.【点睛】本题考查了菱形的性质,三角形中位线定理,熟练掌握相关性质与定理是解题的关键.3、D【解析】
首先将所求式子进行因式分解,然后代入即可得解.【详解】将,,代入,得上式=,故选:D.【点睛】此题主要考查利用完全平方式进行因式分解求值,熟练掌握,即可解题.4、B【解析】
根据平移后阴影部分的面积恰好是长1cm,宽为1cm的矩形,再根据矩形的面积公式即可得出结论.【详解】解:∵平移后阴影部分的面积恰好是长为1cm,宽为1cm的矩形,∴S阴影=1×1=4cm1.故选B.【点睛】本题考查的是图形平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.5、A【解析】
根据中位数和众数的定义求解【详解】解:这组数据的中位数为:1,众数为:16.故选:A【点睛】此题考查中位数和众数的定义,解题关键在于掌握其定义6、B【解析】
根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【详解】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,即∠B=36°,故选:B.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.7、D【解析】
四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),再根据点M的坐标的符号,即可得出答案.【详解】解:∵M(2019,﹣2019),∴点M所在的象限是第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8、C【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:A.不是分式,故本选项错误,B.3y不是分式,故本选项错误,C.是分式,故本选项正确,D.+y不是分式,故本选项错误,故选:C.【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.9、D【解析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【解析】
先解分式方程,最后检验即可得到答案.【详解】解:3(x-2)=x2x=6x=3由3-2≠0,故x=3是方程的解,即答案为C.【点睛】本题考查了解分式方程,其中解方程是关键,检验是易错点.11、A【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.12、D【解析】
根据位似图形的定义解答即可,注意排除法在解选择题中的应用.【详解】根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.故选D.【点睛】本题考查了位似图形的定义.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.二、填空题(每题4分,共24分)13、【解析】
在一次函数y=x+4中,分别令x=0,y=0,解相应方程,可求得A、B两点的坐标,由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP⊥AB时,满足条件,根据直角三角形面积的不同表示方法可求得OP的长,即可求得EF的最小值.【详解】解:∵一次函数y=x+4中,令x=0,则y=4,令y=0,则x=-3,∴A(0,4),B(-3,0),∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,OB=3,由勾股定理得:AB==5,∵AB·OP=AO·BO=2S△OAB,∴OP=,故答案为:.【点睛】本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP的最小值是解题的关键.14、【解析】
首先利用勾股定理得出BO的长,再利用A点的位置得出答案.【详解】解:∵AB⊥OA∴∠OAB=90°,∵OA=3、AB=2,则数轴上表示点C的数为故答案为:【点睛】本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.15、90【解析】试题分析:设物理得x分,则95×60%+40%x=93,截得:x=90.考点:加权平均数的运用16、1.2【解析】分析:先由平均数的公式计算出a的值,再根据方差的公式计算即可.详解:∵数据10,9,a,12,9的平均数是10,∴(10+9+a+12+9)÷5=10,解得:a=10,∴这组数据的方差是15[(10−10)²+(9−10)²+(10−10)²+(12−10)²+(9−10)²]=1.2.故选B.点睛:本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、1【解析】
根据直角三角形的性质求出AB,根据勾股定理求出BC,计算求出BD,根据勾股定理计算即可.【详解】解:∵∠ABC=90°,∠ACB=30°,∴AB=AC=10,由勾股定理得,BC=,∴BD=BC﹣CD=6,∴AD=,故答案为:.【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.18、1【解析】
解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.【详解】解:解二元一次方程方程组解得或则A点坐标为(-2,2),B点坐标为(2,-2)C点坐标为(0,2),D点坐标为(2,-2)所以AC∥BD,AC=BD=2所以四边形ADBC是平行四边形则==2××2×4=1,故答案为1.【点睛】本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.三、解答题(共78分)19、(1)y=﹣2x﹣1;(2)2【解析】
(1)根据y轴上点的坐标特征可求B点坐标,再根据OB=2OC,可求C点坐标,根据点A的纵坐标为1,可求A点坐标,根据待定系数法可求直线l2的解析式;(2)根据点D的横坐标为1,可求D点坐标,再用长方形面积减去1个小三角形面积即可求解.【详解】解:(1)∵当x=0时,y=0+6=6,∴B(0,6),∵OB=2OC,∴C(0,﹣1),∵点A的纵坐标为1,∴﹣1=x+6,解得x=﹣1,∴A(﹣1,1),则,解得.故直线l2的解析式为y=﹣2x﹣1;(2)∵点D的横坐标为1,∴y=1+6=7,∴D(1,7),∴△ACD的面积=10×4﹣×1×6﹣×4×4﹣×1×10=2.【点睛】考查了一次函数图象与几何变换,两条直线相交或平行问题,待定系数法,关键是求出C点坐标,A点坐标,D点坐标.20、(1)v关于t的函数表达式为v=,自变量的取值范围为t>0;(2)放水速度的范围为300≤x≤360立方米/小时.【解析】
(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=2.5,t=3代入求出相应的v的值,即可求出放水速度的范围.【详解】(1)由题意得:vt=900,即:v=,答:(2)当t=2.5时,v==360,当t=3时,v==300,所以放水速度的范围为300≤v≤360立方米/小时,答:所以放水速度的范围为300≤x≤360立方米/小时.【点睛】考查求反比例函数的关系式以及反比例函数图象上点的坐标特点,解题关键在于根据常用的数量关系得出函数关系式.21、(1)该企业从第一季度到第三季度利润的平均增长率为20%.(2)该企业2017年的年利润总和能突破1亿元.【解析】
(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据第一季度及第三季度的利润,即可得出关于x的一元二次方程,解之即可得出x的值,取其正值即可;
(2)根据平均增长率求出四个季度的利润和,与1亿元比较后即可得出结论.【详解】解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%;(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据平均增长率求出四个季度的利润和.22、(1)﹣;(2)1.【解析】
(1)此题涉及零次幂、开立方和绝对值3个考点,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先计算括号里面二次根式的减法,再计算括号外的乘除,最后计算加减即可.【详解】解:(1)原式=1﹣3+2﹣=﹣;(2)原式=(5﹣4)÷+4﹣5=÷+4﹣5=1+4﹣5=1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.23、(1)20;(2)4,4;(3)估计该校学生这学期读书总数约3600本【解析】
将条形图中的数据相加即可;根据众数和中位数的概念解答即可;先求出平均数,再解答即可.【详解】,故答案为20;由条形统计图知,调查学生读书本数最多的是4本,故众数是4本在调查的20人读书本数中,从小到大排列中第9个和第10个学生读的本数都是4本,故中位数是4本;故答案为4;4;每个人读书本数的平均数是:(本),总数是:(本)答:估计该校学生这学期读书总数约3600本.【点睛】本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.24、(1)BM=MN,BM⊥MN,证明见解析;(2)仍然成立,证明见解析【解析】
(1)根据已知正方形ABCD的边角相等关系,推出△ABE≌△ADF(SAS),得出AE=AF,利用MN是△AEF的中位线,BM为Rt△ABE的中线,可得BM=MN,由外角性质,得出∠BME=∠1+∠3,再由MN∥AF,∠1+∠2+∠EAF=∠BAD=90°,等角代换可推出结论;(2)同(1)思路一样,证明△ABE≌△ADF(SAS),利用外角性质和中位线平行关系,通过等角代换即得证明结论.【详解】(1)BM=MN,BM⊥MN.证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,∵CE=CF,∴BC-CE=DC-CF,∴BE=DF,∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,∵M为AE的中点,N为EF的中点,∴MN是△AEF的中位线,BM为Rt△ABE的中线.∴MN∥AF,MN=AF,BM=AE=AM,∴BM=MN,∠EMN=∠EAF,∵BM=AM,∴∠1=∠3,∠2=∠3,∴∠BME=∠1+∠3=∠1+∠2,∴∠BMN=∠BME+∠EMN=∠1+∠2+∠EAF=∠BAD=90°,∴BM⊥MN.故答案为:BM=MN,BM⊥MN.(2)(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新人教版七级英语上Unit7完整
- 2024-2025学年上学期期中教育学业质量监测九年级历史试卷
- 公路软地盘基处理的方法宝典
- 班级体育活动的组织与安排计划
- 节省成本的运营方案计划
- 急诊急救车的合理配置计划
- 新年建立正面工作文化的策略计划
- 中医诊断学课件
- 娱乐场所安保工作总结与改进建议计划
- 2025年中考数学考点分类专题归纳之几何初步
- 民间借贷利息计算表
- 2024-2030年中国葡萄酒行业市场发展趋势与前景展望战略分析报告
- 信息技术与学科教学融合课教学设计表
- 【对民法中正当防卫的思考(论文)6800字】
- 喷涂设备租用合同模板
- 中国偏头痛诊治指南(第一版)2023解读
- 混凝土结构施工图平面整体表示方法制图规则和详图
- 2024广东深圳市部分事业单位公开招聘300人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 八年级物理上册 第四章 第五节《光的色散》说课稿 (新版)新人教版
- 新《劳动法》知识学习考试题库200题(含答案)
- 铭记历史 勿忘国耻九一八事变教育主题班会课件
评论
0/150
提交评论