福建省厦门市2024年数学八年级下册期末经典试题含解析_第1页
福建省厦门市2024年数学八年级下册期末经典试题含解析_第2页
福建省厦门市2024年数学八年级下册期末经典试题含解析_第3页
福建省厦门市2024年数学八年级下册期末经典试题含解析_第4页
福建省厦门市2024年数学八年级下册期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门市2024年数学八年级下册期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列等式成立的是()A.•= B.=2 C.﹣= D.=﹣32.在函数y=中,自变量x的取值范围是()A.x≥-3且x≠0 B.x<3C.x≥3 D.x≤33.在平面直角坐标系中,点(a-2,a)在第三象限内,则a的取值范围是()A. B. C. D.4.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差S甲2=3,S乙A.甲 B.乙 C.一样 D.不能确定5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b6.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误7.如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的()A.点C B.点O C.点E D.点F8.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为,N的坐标为,则在第二象限内的点是()A.A点 B.B点 C.C点 D.D9.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.110.如图,在菱形ABCD中,AC、BD相交于点O,AC=8,BD=6,则菱形的边长等于()A.10 B.20 C. D.511.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.12.在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为()A.3 B.2 C.1 D.-1二、填空题(每题4分,共24分)13.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.14.如图,在中,点D、E分别是AB、AC的中点,连接BE,若,,,则的周长是_________度.15.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.16.不等式组的解集为_________.17.实数64的立方根是4,64的平方根是________;18.命题“在中,如果,那么是等边三角形”的逆命题是_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,为坐标原点,直线与轴的正半轴交于点,与直线交于点,若点的横坐标为3,求直线与直线的解析式.20.(8分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.(1)问:第一次每本的进货价是多少元?(2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?21.(8分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.(1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.22.(10分)(某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?23.(10分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出周长C的最小值.24.(10分)如图,已知平行四边形ABCD,(1)=;(用的式子表示)(2)=;(用的式子表示)(3)若AC⊥BD,||=4,||=6,则|+|=.25.(12分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.(1)填空:△ABC≌△;AC和BD的位置关系是(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为cm.26.已知x=,y=,求下列各式的值:(1)x2-xy+y2;(2).

参考答案一、选择题(每题4分,共48分)1、B【解析】

利用二次根式的乘法法则对、进行判断;利用二次根式的加减法对进行判断;利用二次根式的性质对进行判断.【详解】解:、原式,所以选项错误;、原式,所以选项正确;、原式,所以选项错误;、原式,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2、D【解析】

根据二次根式有意义的条件解答即可.【详解】由题意得3-x≥0,解得:x≤3,故选D.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义必须满足被开方数大于等于0,熟练掌握二次根式有意义的条件是解题关键.3、B【解析】

利用第三象限点的坐标特征得到,然后解不等式组即可.【详解】∵点P(a﹣2,a)在第三象限内,∴,∴a<1.故选B.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.也考查了第三象限点的坐标特征.4、B【解析】

根据方差的定义,方差越小数据越稳定.【详解】解:∵两人命中环数的平均数都是7,方差S甲2=3,S乙2=1.8,∴S甲2>S乙2,∴射击成绩较稳定的是乙;故选:B.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、D【解析】由图象对称轴为直线x=-,则-=-,得a=b,A中,由图象开口向上,得a>0,则b=a>0,由抛物线与y轴交于负半轴,则c<0,则abc<0,故A错误;B中,由a=b,则a-b=0,故B错误;C中,由图可知当x=1时,y<0,即a+b+c<0,又a=b,则2b+c<0,故C错误;D中,由抛物线的对称性,可知当x=1和x=-2时,函数值相等,则当x=-2时,y<0,即4a-2b+c<0,则4a+c<2b,故D正确.故选D.点睛:二次函数y=ax2+bx+c(a≠0)中,a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定.此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否.6、C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.7、B【解析】

从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.【详解】解:∵AB=2,BC=4,四边形ABCD是矩形,∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.故选:B.【点睛】本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.8、D【解析】

根据点的坐标特征,可得答案.【详解】MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9、C【解析】

∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.10、D【解析】

根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】解:∵四边形ABCD是菱形,∵AC=8,BD=6,

∴OA=4,OB=3,即菱形ABCD的边长是1.

故选:D.【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.11、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.12、C【解析】

根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.【详解】解:∵点A(2,m),∴点A关于x轴的对称点B(2,−m),∵B在直线y=−x+1上,∴−m=−2+1=−1,∴m=1,故选C.【点睛】此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.二、填空题(每题4分,共24分)13、1【解析】

设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.【详解】设反比例函数的解析式是:y=,设A的点的坐标是(m,n).

则AB=m,OB=n,mn=k.

∵△ABP的面积为2,

∴AB•OB=2,即mn=2

∴mn=1,则k=mn=1.

故答案是:1.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.14、26【解析】

由题意可知,DE为的中位线,依据中位线定理可求出BC的长,因为,故BE=BC,而EC=AE,此题得解.【详解】解:点D、E分别是AB、AC的中点DE为的中位线,又故答案为:26【点睛】本题考查了中位线定理、等角对等边,熟练利用这两点求线段长是解题的关键.15、110【解析】

延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【详解】如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.

∵∠CBF=90°,

∴∠ABC+∠OBF=90°,

又∵直角△ABC中,∠ABC+∠ACB=90°,

∴∠OBF=∠ACB,

在△OBF和△ACB中,

∴△OBF≌△ACB(AAS),

∴AC=OB,

同理:△ACB≌△PGC,

∴PC=AB,

∴OA=AP,

所以,矩形AOLP是正方形,

边长AO=AB+AC=3+4=7,

所以,KL=3+7=10,LM=4+7=11,

因此,矩形KLMJ的面积为10×11=110.【点睛】本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.16、【解析】

先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】解:解不等式①得:,

解不等式②得:,

∴不等式组的解集为,

故答案为:.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17、【解析】

根据平方根的定义求解即可.【详解】.故答案为:.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.18、如果是等边三角形,那么.【解析】

把原命题的题设与结论进行交换即可.【详解】“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.故答案为:如果是等边三角形,那么.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.三、解答题(共78分)19、直线l1的解析式为y=﹣x+6,直线l2的解析式为y=x.【解析】

把A(6,0)代入y=﹣x+b求得直线l1的解析式,把B点的横坐标代入y=﹣x+6得到B点的坐标,再把B点的坐标代入y=kx,即可得到结论.【详解】∵直线l1:y=﹣x+b与x轴的正半轴交于点A(6,0),∴0=﹣6+b,∴b=6,∴直线l1的解析式为y=﹣x+6;∵B点的横坐标为3,∴当x=3时,y=3,∴B(3,3),把B(3,3)代入y=kx得:k=1,∴直线l2的解析式为y=x.【点睛】本题考查了两条直线相交或平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.20、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.【解析】

(1)设第一次每本的进货价是x元,根据提价之后用6000元购进数量比第一次少了1000本,列方程求解;(2)设售价为y元,根据获利不低于4200元,列不等式求解【详解】解:(1)设第一次每本的进货价是x元,由题意得:=1000,解得:x=1.答:第一次每本的进货价是1元;(2)设售价为y元,由题意得,(6000+2000)y﹣12000≥4200,解得:y≥1.2.答:每本售价为1.2元.考点:分式方程的应用;一元一次不等式的应用21、(1)详见解析;(1)【解析】

(1)因为∠1=∠1,所以BO=CO,1BO=1CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;

(1)在△BOC中,∠BOC=110°,则∠1=∠1=30°,AC=1AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.【详解】(1)证明:∵∠1=∠1,

∴BO=CO,即1BO=1CO.

∵四边形ABCD是平行四边形,

∴AO=CO,BO=OD,

∴AC=1CO,BD=1BO,

∴AC=BD.

∵四边形ABCD是平行四边形,

∴四边形ABCD是矩形;

(1)在△BOC中,∵∠BOC=110°,

∴∠1=∠1=(180°-110°)÷1=30°,

∴在Rt△ABC中,AC=1AB=1×4=8(cm),

∴BC=(cm).∴四边形ABCD的面积=4(cm1)【点睛】此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.22、(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)违背了广告承诺.【解析】试题分析:(1)根据题目中2个等量关系列出,求出结果;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺.试题解析:解:(1)设熟练工加工1件型服装需要x小时,加工1件型服装需要y小时.由题意得:,解得:答:熟练工加工1件型服装需要2小时,加工1件型服装需要1小时.……4分当一名熟练工一个月加工型服装件时,则还可以加工型服装件.又∵≥,解得:≥,随着的增大则减小∴当时,有最大值.∴该服装公司执行规定后违背了广告承诺..考点:方程组,函数应用23、(1)、;(2);(3)①;②.【解析】

(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE-AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【详解】(1)∵BC=AD=9,BE=4,∴CE=9-4=5,∵AF=CE,即:3t=5,∴t=,∴,即:,解得BH=;当t=时,AF=CE,此时BH=.(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF∴即∴BH=当点F在点B的左边时,即t<4时,BF=12-3t此时,当△BEF∽△BHE时:即解得:此时,当△BEF∽△BEH时:有BF=BH,即解得:当点F在点B的右边时,即t>4时,BF=3t-12此时,当△BEF∽△BHE时:即解得:(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=;②如图∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'=,∴C的最小值=.【点睛】此题考查了勾股定理、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论