版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年江苏省泰州市民兴实验中学八年级数学第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,矩形ABCD中,点E,F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若,,则图中阴影部分的面积为()A.4 B.6 C.12 D.242.有一个正五边形和一个正方形边长相等,如图放置,则的值是()A. B. C. D.3.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米 B.10米 C.12米 D.14米4.下列各式中,不是二次根式的是()A. B. C. D.5.已知,则下列结论正确的是()A. B. C. D.6.在矩形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和47.已知的周长为,,,分别为,,的中点,且,,那么的长是()A. B. C. D.8.下列判断正确的是()A.四条边相等的四边形是正方形 B.四个角相等的四边形是矩形C.对角线垂直的四边形是菱形 D.对角线相等的四边形是平行四边形9.若数a使关于x的不等式组无解,且使关于x的分式方程有正整数解,则满足条件的整数a的值之积为()A.28 B.﹣4 C.4 D.﹣210.已知,,则的结果为()A. B. C. D.11.已知一个多边形内角和是外角和的4倍,则这个多边形是()A.八边形 B.九边形 C.十边形 D.十二边形12.在下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D坐标在第四象限,那么点D的坐标是__________;14.如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.15.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=_____时∠ACB=90°.16.计算:(2+)(2-)=_______.17.已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.18.如图,直线为和的交点是,过点分别作轴、轴的垂线,则不等式的解集为__________.三、解答题(共78分)19.(8分)在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)闭上眼睛随机地从袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是红球,将它放在桌上,闭上眼睛从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?(3)若取出一只球,将它放回袋中,闭上眼睛从袋中再随机地取出1只球,两次取出的球都是白球概率是多少?(用列表法或树状图法计算)20.(8分)分解因式和利用分解因式计算(1)(a2+1)2-4a2(2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。21.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AC⊥AB,AB=,且AC∶BD=2∶3.(1)求AC的长;(2)求△AOD的面积.22.(10分)已知反比例函数为常数,且).(1)若在其图像的每个分支上,随的增大而增大,求的取值范围.(2)若其图象与一次函数y=−x+1图象的一个交点的纵坐标是3,求m的值。23.(10分)平面直角坐标系中,设一次函数的图象是直线.(1)如果把向下平移个单位后得到直线,求的值;(2)当直线过点和点时,且,求的取值范围;(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.24.(10分)某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:)170~174175~179180~184185~189甲车间1342乙车间0622(1)分别计算甲、乙两车间生产的零件直径的平均数;(2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内?(3)若该零件的直径在的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?25.(12分)如图,已知,点在上,点在上.(1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);(2)连结,求证四边形是菱形.26.一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:成绩(分)456789甲组(人)125214乙组(人)114522(1)请你根据上述统计数据,把下面的图和表补充完整;一分钟投篮成绩统计分析表:统计量平均分方差中位数合格率优秀率甲组2.56680.0%26.7%乙组6.81.7686.7%13.3%(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由题意可知,,,所以阴影部分的面积就等于矩形面积的一半.【详解】解:由题意可知,,故答案为:C【点睛】本题考查了与矩形有关的面积问题,确定所求面积与矩形面积的数量关系是解题的关键.2、B【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【详解】解:正五边形的内角的度数是正方形的内角是90°,
则∠1=108°-90°=18°.
故选:B.【点睛】本题考查了多边形的内角和定理,求得正五边形的内角的度数是关键.3、B【解析】
试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.4、A【解析】
根据二次根式的定义即可求出答案.【详解】解:由于3−π<0,∴不是二次根式,故选:A.【点睛】本题考查二次根式,解题的关键是正确理解二次根式的定义,本题属于基础题型.5、D【解析】
根据不等式的性质,求出不等式的解集即可.【详解】解:不等式两边都除以2,得:,故选:D.【点睛】本题考查了解一元一次不等式,能根据题意得出不等式的解集是解此题的关键.6、B【解析】
先根据角平分线及矩形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【详解】∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故选:B.【点睛】本题主要考查角平分线的定义和等腰三角形的判定定理,掌握“双平等腰”模型,是解题的关键.7、B【解析】
根据三角形周长公式可得AB+AC+BC=60cm,然后根据三角形中位线的性质可得EF=,DF=,DE=,即可求出EF+DF+DE的值,从而求出DE.【详解】解:∵的周长为∴AB+AC+BC=60cm∵,,分别为,,的中点,∴EF、DF、DE是△ABC的中位线∴EF=,DF=,DE=∴EF+DF+DE=++=(++)=30cm∵,∴DE=30-DF-EF=8cm故选B.【点睛】此题考查的是三角形中位线的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解决此题的关键.8、B【解析】
由题意根据正方形、矩形、菱形、平行四边形的判定分别对每一项进行分析判断即可.【详解】解:A.四条边相等的四边形是菱形,故本选项错误;B.四个角相等的四边形是矩形,故本选项正确;C.对角线垂直的平行四边形是菱形,故本选项错误;D.对角线互相平分的四边形是平行四边形,故本选项错误.故选:B.【点睛】本题考查正方形、平行四边形、矩形以及菱形的判定.注意掌握正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.9、B【解析】
解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=且x≠5,即a+3=1,5,10,解得:a=﹣2,2,1.综上,满足条件a的为﹣2,2,之积为﹣4,故选B.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、B【解析】
将代数式因式分解,再代数求值即可.【详解】故选B【点睛】本题考查知识点涉及因式分解以及代数式求值,熟练掌握因式分解,简化计算是解答本题的关键.11、C【解析】
设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2)×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.12、C【解析】试题分析:根据轴对称图形与中心对称图形的概念可判断出只有C选项符合要求.故选C.考点:1.中心对称图形;2.轴对称图形.二、填空题(每题4分,共24分)13、(3,-3)【解析】
根据全等三角形的性质,三条对应边均相等,又顶点C与顶点D相对应,所以点D与C关于AB对称,即点D与点C对与AB的相对位置一样.【详解】解:∵△ABD与△ABC全等,
∴C、D关于AB对称,顶点C与顶点D相对应,即C点和D点到AB的相对位置一样.
∵由图可知,AB平行于x轴,
∴D点的横坐标与C的横坐标一样,即D点的横坐标为3.
又∵点A的坐标为(0,2),点C的坐标为(3,3),点D在第四象限,
∴C点到AB的距离为2.
∵C、D关于AB轴对称,
∴D点到AB的距离也为2,
∴D的纵坐标为-3.
故D(3,-3).14、1【解析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.【详解】连接OB.∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.15、1【解析】
设△ABC的三边分别为BC=a、AC=b、AB=c,当∠ACB=90°时,△ABC是直角三角形,由勾股定理可得到a2+b2=c2,即S1+S2=S3,代入可得解.【详解】设△ABC的三边分别为BC=a、AC=b、AB=c,∴S1=a2=9,S2=b2,S3=c2=25,当∠ACB=90°时,△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=1.故答案为:1.【点睛】本题考查了勾股定理的几何背景,灵活运用勾股定理是解题关键.16、1【解析】
根据实数的运算法则,利用平方差公式计算即可得答案.【详解】(2+)(2-)=22-()2=4-3=1.故答案为:1【点睛】本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.17、3.5【解析】
先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.【详解】∵数据3、a、4、6的平均数是4,∴(3+a+4+6)÷4=4,∴x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,则中位数是3.5;故答案为:3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.18、.【解析】
根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.【详解】解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.【点睛】本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.三、解答题(共78分)19、(1);(2);(3).【解析】
(1)由白球3只、红球2只、黑球1只根据概率公式求解即可;(2)若取出的第1只球是红球,则剩余的5个球中有1个红球,根据概率公式求解即可;(3)先列举出所有等可能的情况数,再根据概率公式求解即可.【详解】解:(1)由题意得取出的球是黑球的概率为;(2)若取出的第1只球是红球,则剩余的5个球中有1个红球所以这时取出的球还是红球的概率是;(3)根据题意列表如下:共有36种组合,其中两次取出的球都是白球的有9中组合,则取出的球都是白球概率是.【点睛】本题考查用列表法或树状图法求概率.解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.20、(1);(2)1.18【解析】
(1)原式利用平方差公式及完全平方公式分解即可;
(2)原式提取公因式,将已知等式代入计算即可求出值.【详解】解:(1)原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a+1)2(2)∵x+y=1.2,x+3y=1∴2x+4y=1.2∴x+2y=1.6∴原式=3(x2+4xy+4y2)=3(x+2y)2=3×1.6×1.6=1.18【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21、(1);(2)【解析】
解:(1)如图,在▱ABCD中,OA=OC=AC,OB=OD=BD.∵AC:BD=2:3,∴AO:BO=2:3,故设AO=2x,BO=3x,则在直角△ABO中,由勾股定理得到:OB2﹣OA2=AB2,即9x2﹣4x2=20,解得,x=2或x=﹣2(舍去),则2x=4,即AO=4,∴AC=2OA=8;(2)如图,S△AOB=AB•AO=××4=4.∵OB=OD,∴S△AOD=S△AOB=4.22、(1)m<5;(2)m=-1【解析】
(1)由反比例函数y=的性质:当k<0时,在其图象的每个分支上,y随x的增大而增大,进而可得:m-5<0,从而求出m的取值范围;(2)先将交点的纵坐标y=3代入一次函数y=-x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y=中,即可求出m的值.【详解】(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m−5<0,解得:m<5;(2)将y=3代入y=−x+1中,得:x=−2,∴反比例函数y=图象与一次函数y=−x+1图象的交点坐标为:(−2,3).将(−2,3)代入y=得:3=解得:m=−1.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于反比例函数的性质进行解答23、(1);(2)且;(3)【解析】
(1)根据一次函数平移的规律列方程组求解;(2)将两点的坐标代入解析式得出方程组,根据方程组可得出a,b的等量关系式,然后根据b的取值范围,可求出a的取值范围,另外注意一次函数中二次项系数2a-3≠0的限制条件;(3)先根据点P的坐标求出动点P所表示的直线表达式,再根据直线与平行得出结果.【详解】解:(1)依题意得,.(2)过点和点,两式相减得;解法一:,当时,;当时,.,随的增大而增大且,.,.且.解法二:,,解得.,∴.且.(3)设,.消去得,动点的图象是直线.不在上,与平行,,.【点睛】本题考查一次函数的图像与性质,以及一次函数平移的规律,掌握基本的性质是解题的关键.24、(1),;(2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内;(3)乙车间的合格率高【解析】
(1)根据加权平均数的计算公式直接计算即可;(2)根据中位数、众数的定义得出答案;(3)分别计算两车间的合格率比较即可得出答案。【详解】解:(1)(2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内(3)甲车间合格率:;乙车间合格率:;乙车间的合格率高【点睛】本题考查了数据的分析,考查了加权平均数、中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会服务机构会计制度探讨
- 医院核酸检测流程制度
- 餐饮行业燃气设备安全制度
- 急救药品物品管理制度范文
- 生产运作与供应链管理制度
- 经费使用与审批管理制度
- 老年人教育权益维护制度探讨
- 科研机构体检会诊制度与数据管理
- 胸痛中心绩效考核制度
- 2024年度土地租赁使用权抵押合同范本3篇
- 中国书法欣赏之楷书欣赏PPT课件
- 江森ADS备份及恢复数据操作手册
- 学校电教设备使用记录表
- 工程量清单项目编码完整版
- JJF 1629-2017 烙铁温度计校准规范(高清版)
- 项目工程质量管理体系
- 部编版二年级下册语文拼音练习
- 《高压电动机保护》PPT课件.ppt
- 在全市油气输送管道安全隐患整治工作领导小组第一次会议上的讲话摘要
- 小学英语后进生的转化工作总结3页
- 定喘神奇丹_辨证录卷四_方剂树
评论
0/150
提交评论