2024届黑龙江省哈尔滨市光华中学八年级数学第二学期期末调研模拟试题含解析_第1页
2024届黑龙江省哈尔滨市光华中学八年级数学第二学期期末调研模拟试题含解析_第2页
2024届黑龙江省哈尔滨市光华中学八年级数学第二学期期末调研模拟试题含解析_第3页
2024届黑龙江省哈尔滨市光华中学八年级数学第二学期期末调研模拟试题含解析_第4页
2024届黑龙江省哈尔滨市光华中学八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈尔滨市光华中学八年级数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知:四边形ABCD的对角线AC、BD相交于点O,则下列条件不能判定四边形ABCD是平行四边形的是A., B.,C., D.,2.若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为()A.﹣3 B.﹣1 C.1 D.33.如图,在菱形中,对角线、相交于点,,,过作的平行线交的延长线于点,则的面积为()A.22 B.24 C.48 D.444.下列因式分解正确的是()A. B.C. D.5.如图,O既是AB的中点,又是CD的中点,并且AB⊥CD.连接AC、BC、AD、BD,则AC,BC,AD,BD这四条线段的大小关系是()A.全相等B.互不相等C.只有两条相等D.不能确定6.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形7.一次函数y=k-2x+3的图像如图所示,则k的取值范围是(A.k>3 B.k<3 C.k>2 D.k<28.刘师傅要检验一个零件是否为平行四边形,用下列方法不能检验的是()A.AB∥CD,AB=CD B.AB∥CD,AD=BCC.AB=CD,AD=BC D.AB∥CD,AD∥BC9.如图,D、E分别为△ABC边AC、BC的中点,∠A=60°,DE=6,则下列判断错误的是()A.∠ADE=120° B.AB=12 C.∠CDE=60° D.DC=610.如图,中,垂足为点,若,则的度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为_____.12.如图所示,△ABC中,AH⊥BC于H,点E,D,F分别是AB,BC,AC的中点,HF=10cm,则ED的长度是_____cm.13.把(a-2)根号外的因式移到根号内,其结果为____.14.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是_____.15.如图,是的角平分线,交于,交于.且交于,则________度.16.若反比例函数的图象经过点,则的图像在_______象限.17.在□ABCD中,一角的平分线把一条边分成3cm和4cm两部分,则□ABCD的周长为__________.18.将直线平移,使之经过点,则平移后的直线是__________.三、解答题(共66分)19.(10分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.20.(6分)已知:如图,一次函数的图象与反比例函数()的图象交于点.轴于点,轴于点.一次函数的图象分别交轴、轴于点、点,且,.(1)求点的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当取何值时,一次函数的值小于反比例函数的值?21.(6分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.(1)直接写出的坐标;(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(8分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)求△BDG的面积.23.(8分)某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,请回答:(1)写出售价为50元时,每天能卖樱桃_____千克,每天获得利润_____元.(2)若该专卖店销售这种樱桃要想平均每天获利2240元,每千克樱桃应降价多少元?(3)若该专卖店销售这种樱桃要想平均每天获利最大,每千克樱桃应售价多少元?24.(8分)为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台价格,月处理污水量极消耗费如下表:经预算,该企业购买设备的资金不高于105万元.⑴请你为企业设计几种购买方案.⑵若企业每月产生污水2040吨,为了节约资金,应选那种方案?25.(10分)如图,在平面直角坐标系可中,直线y=x+1与y=﹣x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求点A,B,C的坐标;(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出的值,不存在请说明理由;(3)当△CBD为等腰三角形时直接写出D坐标.26.(10分)已知的三边长分别为,求证:是直角三角形.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形,(2)两组对边分别相等的四边形是平行四边形,(3)一组对边平行且相等的四边形是平行四边形,(4)两组对角分别相等的四边形是平行四边形,(5)对角线互相平分的四边形是平行四边形,根据平行四边形的判定即可解答.【详解】A选项,,,根据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,B选项,不能判定四边形是平行四边形,C选项,,根据对角线互相平分的四边形是平行四边形,能判定四边形ABCD是平行四边形,D选项,,根据两组对角分别相等的四边形是平行四边形能判定四边形ABCD是平行四边形,故选B.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.2、D【解析】

设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=1.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-,x1•x2=.3、B【解析】

先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,BO=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=.故答案为:B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.4、C【解析】

利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.【详解】解:A、,故此选项不符合题意;

B、,故此选项不符合题意;C、,故此选项符合题意;

D、,故此选项不符合题意;

故选:C.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、A【解析】

根据已知条件可判断出是菱形,则AC,BC,AD,BD这四条线段的大小关系即可判断.【详解】∵O既是AB的中点,又是CD的中点,∴,∴是平行四边形.∵AB⊥CD,∴平行四边形是菱形,∴.故选:A.【点睛】本题主要考查菱形的判定及性质,掌握菱形的判定及性质是解题的关键.6、D【解析】

本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A.有一个角是直角的四边形是矩形,错误;B.两条对角线互相垂直的四边形是菱形,错误;C.两条对角线互相垂直平分的四边形是正方形,错误;D.两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.7、D【解析】

根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.【点睛】此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.8、B【解析】

根据平行四边形的判定方法一一判断即可.【详解】解:A、∵AB∥CD,AB=CD,

∴四边形ABCD是平行四边形.

B、由AB∥CD,AD=BC,无法判断四边形是平行四边形,四边形可能是等腰梯形.

C、∵AB=CD,AD=BC

∴四边形ABCD是平行四边形.

D、∵AB∥CD,AD∥BC,

∴四边形ABCD是平行四边形.

故选B.【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,属于中考常考题型.9、D【解析】

由题意可知:DE是△ABC的中位线,然后根据中位线的性质和平行线的性质逐一判断即可.【详解】解:∵D、E分别为△ABC边AC、BC的中点,∴DE∥AB,,∵∠A=60°,DE=6,∴∠ADE=120°,AB=12,∠CDE=60°,∴A、B、C三项是正确的;由于AC长度不确定,而,所以DC的长度不确定,所以D是错误的.故选:D.【点睛】本题主要考查了三角形的中位线定理,属于基本题型,熟练掌握三角形的中位线定理是解题关键.10、A【解析】

根据平行四边形性质得出∠B=∠D,根据三角形内角和定理求出∠B即可.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,∴∠AEB=90°.又∠BAE=23°,∴∠B=90°-23°=67°.即∠D=67°.故选:A.【点睛】本题考查了平行四边形的性质,关键是求出∠B的度数.二、填空题(每小题3分,共24分)11、3.【解析】试题分析:由平行四边形ABCD的对角线相交于点O,OE⊥BD,根据线段垂直平分线的性质,可得BE=DE,又由平行四边形ABCD的周长为30,可得BC+CD的长,继而可得△CDE的周长等于BC+CD.试题解析:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形ABCD的周长为30,∴BC+CD=3,∵OE⊥BD,∴BE=DE,∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=3.考点:3.平行四边形的性质;3.线段垂直平分线的性质.12、1【解析】

分析中先利用直角三角形的性质,然后再利用三角形的中位线定理可得结果.【详解】∵AH⊥BC,F是AC的中点,

∴FH=AC=1cm,

∴AC=20cm,

∵点E,D分别是AB,BC的中点,

∴ED=AC,

∴ED=1cm.

故答案为:1.【点睛】本题考查的知识点:三角形中位线定理和直角三角形斜边上的中线等于斜边的一半,是基础知识较简单.13、-【解析】根据二次根式有意义的条件,可知2-a>0,解得a<2,即a-2<0,因此可知(a-2)根号外的因式移到根号内后可得(a-2)=.故答案为-.14、1.【解析】

利用平移的性质得到AE=CF,AE∥CF,BE=DF,BE∥DF,则可判断四边形AEFC和四边形BEFD都为平行四边形,然后根据平行四边形的面积公式,利用平移过程中扫过的面积=S▱AEFC+S▱BEFD进行计算.【详解】∵平移折线AEB,得到折线CFD,∴AE=CF,AE∥CF,BE=DF,BE∥DF,∴四边形AEFC和四边形BEFD都为平行四边形,∴平移过程中扫过的面积=S▱AEFC+S▱BEFD=1×3+1×3=1.故答案为:1.【点睛】此题考查平移的性质:对应边平行(或在同一直线上)且相等,平行四边形的判定定理.15、【解析】

先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.【详解】如图所示:∵DE∥AC,DF∥AB,

∴四边形AEDF为平行四边形,

∴OA=OD,OE=OF,∠2=∠3,

∵AD是△ABC的角平分线,

∵∠1=∠2,

∴∠1=∠3,

∴AE=DE.

∴▱AEDF为菱形.

∴AD⊥EF,即∠AOF=1°.

故答案是:1.【点睛】考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.16、二、四【解析】

用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.【详解】解:将点代入得,解得:因为k<0,所以的图像在二、四象限.故答案为:二、四【点睛】本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.17、2cm或22cm【解析】如图,设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∵∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.∴BC=3+4=1.①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.所以□ABCD的周长为22cm或2cm.故答案为:22cm或2cm.点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.18、y=2x-1.【解析】

根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(9,3)代入即可得出平移后的直线解析式.【详解】设平移后直线的解析式为y=2x+b.把(9,3)代入直线解析式得3=2×9+b,解得b=-1.所以平移后直线的解析式为y=2x-1.故答案为:y=2x-1.【点睛】本题考查了一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时,k的值不变是解题的关键.三、解答题(共66分)19、(1)见解析;(2)OF=29.【解析】

(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=12AC,利用勾股定理计算AC【详解】(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD.∵DF=CE,∴DF+DE=CE+ED,即:FE=CD.∵点F、E在直线CD上∴AB=FE,AB∥FE.∴四边形ABEF是平行四边形又∵BE⊥CD,垂足是E,∴∠BEF=90°.∴四边形ABEF是矩形.(2)解:∵四边形ABEF是矩形O,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE,∴CE=4.∴FC=10.在Rt△AFD中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt△AFC中,∠AFC=90°.∴AC=A∵点O是平行四边形ABCD对角线的交点,∴O为AC中点在Rt△AFC中,∠AFC=90°.O为AC中点.∴OF=12AC=29【点睛】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.20、(1)的坐标为;(2),;(3)当时,一次函数的值小于反比例函数的值.【解析】

(1)本题需先根据题意一次函数与y轴的交点,从而得出D点的坐标.(2)本题需先根据在Rt△COD和Rt△CAP中,,OD=3,再根据S△DBP=27,从而得出BP得长和P点的坐标,即可求出结果.(3)根据图形从而得出x的取值范围即可.【详解】解:(1)∵一次函数与轴相交,∴令,解得,∴的坐标为;(2)∵,∴,又∵,∴,∴,∴,∴,∴,在中,,即,∴,故,把坐标代入,得到,则一次函数的解析式为:;把坐标代入反比例函数解析式得,则反比例解析式为:;(3)如图:根据图象可得:,解得:或故直线与双曲线的两个交点为,,∵,∴当时,一次函数的值小于反比例函数的值.【点睛】本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意知识的综合运用与图形相结合是解题的关键.21、(1),(2),(3)存在,或【解析】

(1)求出B,C两点坐标,利用中点坐标公式计算即可.(2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.(3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.【详解】解:(1)∵直线与轴分别交于C、B两点,∴B(0,6),C(-8,0),∵CD=DB,∴D(-4,3).(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.∵C(-8,0),B′(-4,6),∴直线CB′的解析式为,∴P(-2,9),作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.由题意点P向左平移4个单位,向下平移3个单位得到T,∴T(-6,6),∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=1.∴PD′+D′C′+C′E的最小值为1.(3)如图2中,延长交BK′于J,设BK′交OC于R.∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,所以,所以OR=3,tan∠OBR=,∵∠S′JK′=∠OBR=∠RBC,∴tan∠S′JK′==,∴,∵,∴,所以为的中点,,∴,由旋转的性质可知:,.①当时,设,,解得,所以.②当时,同理则有,整理得:,解得,所以,又因为,,所以直线为,此时在直线上,此时三角形不存在,故舍去.综上所述,满足条件的点N的坐标为或.【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称最短问题,垂线段最短,等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题.22、(1)见解析;(2)【解析】

(1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC=BC′,∠GBD=∠DBC,从而得出AD=BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;(2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.【详解】(1)证明:∵四边形ABCD为矩形∴AD=BC,AB=DC,AD∥BC,∠BAD=90°∴∠GDB=∠DBC由折叠的性质可得BC=BC′,∠GBD=∠DBC∴AD=BC′,∠GBD=∠GDB∴GD=GB∴AD-GD=BC′-GB∴AG=C′G;(2)解:设GD=GB=x,则AG=AD-GD=8-x在Rt△ABG中即解得:即∴S△BDG=【点睛】此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.23、2002000(2)4元或6元(3)当销售单价为55元时,可获得销售利润最大【解析】试题分析:(1)根据每天能卖出樱桃=100+10×(60﹣10)计算即可得到每天卖的樱桃,根据利润=单价×数量计算出每天获得利润;(2)设每千克樱桃应降价x元,根据每千克的利润×数量=2240元,列方程求解;(3)设每千克樱桃应降价x元,根据利润y=每千克的利润×数量,列出函数关系式,利用配方法化成顶点式即可求出答案.解:(1)售价为50元时,每天能卖出樱桃100+10×(60﹣10)=200千克,每天获得利润(50﹣40)×200=2000元,故答案为200、2000;(2)设每千克樱桃应降价x元,根据题意得:(60﹣40﹣x)(100+10x)=2240,整理得:x2﹣10x+24=0,x=4或x=6,答:每千克核桃应降价4元或6元;(3)设降价为x元,利润y=(60﹣40﹣x)(100+10x)=﹣10x2+100x+2000=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∴当x=5时,y的值最大.60-5=55元.答:当销售单价为55元时,可获得销售利润最大.点睛:本题考查了利润的计算方法,一元二次方程的实际应用,二次函数的实际应用,利用基本数量关系利润=每千克的利润×数量,列出方程和函数关系式是解答本题的关键.24、(1)有三种购买方案:方案一:不买A型,买B型10台,方案二,买A型1台,B型9台,方案三,买A型2台,B型8台;(2)为了节约资金应购买A型1台,B型9台,即方案二.【解析】

(1)设购买污水处理设备A型x台,则B型(10-x)台,列出不等式求解即可,x的值取正整数;

(2)根据企业每月产生的污水量为2040吨,列出不等式求解,再根据x的值选出最佳方案.【详解】解:(1)设购买污水处理设备A型x台,则B型(10-x)台,根据题意得

,解得0≤x≤,

∵x为整数,

∴x可取0,1,2,

当x=0时,10-x=10,

当x=1,时10-x=9,

当x=2,时10-x=8,

即有三种购买方案:

方案一:不买A型,买B型10台,

方案二,买A型1台,B型9台,

方案三,买A型2台,B型8台;

(2)由240x+200(10-x)≥2040

解得x≥1

由(1)得1≤x≤

故x=1或x=2

当x=1时,购买资金12×1+10×9=102(万元)

当x=2时,购买资金12×2+10×8=104(万元)

∵104>102

∴为了节约资金应购买A型1台,B型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论