2024年河北省石家庄市同文中学八年级下册数学期末达标检测模拟试题含解析_第1页
2024年河北省石家庄市同文中学八年级下册数学期末达标检测模拟试题含解析_第2页
2024年河北省石家庄市同文中学八年级下册数学期末达标检测模拟试题含解析_第3页
2024年河北省石家庄市同文中学八年级下册数学期末达标检测模拟试题含解析_第4页
2024年河北省石家庄市同文中学八年级下册数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年河北省石家庄市同文中学八年级下册数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在中,若斜边,则边上的中线的长为()A.1 B.2 C. D.2.若一次函数y=mx+n中,y随x的增大而减小,且知当x>2时,y<0,x<2时,y>0,则m、n的取值范围是.()A.m>0,n>0 B.m<0,n<0 C.m>0,n<0 D.m<0,n>03.下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分4.电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是()A. B.C. D.5.如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于A.2 B. C.3 D.6.下列是最简二次根式的是A. B. C. D.7.ABC的内角分别为A、B、C,下列能判定ABC是直角三角形的条件是()A.A2B3C B.C2B C.A:B:C3:4:5 D.ABC8.下列图形是中心对称图形,但不是轴对称图形的是(

)A. B. C. D.9.如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是()A. B.2 C.2 D.410.下列各组数中,能构成直角三角形的是()A.1,1, B.4,5,6 C.6,8,11 D.5,12,15二、填空题(每小题3分,共24分)11.已知一组数据6、4、a、3、2的平均数是5,则a的值为_____.12.若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.13.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=_____.14.铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.15.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.16.如图,在中,,,,过点作且点在点的右侧.点从点出发沿射线方向以/秒的速度运动,同时点从点出发沿射线方向以/秒的速度运动,在线段上取点,使得,设点的运动时间为秒.当__________秒时,以,,,为顶点的四边形是平行四边形.17.下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.18.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.三、解答题(共66分)19.(10分)分式化简:(a-)÷20.(6分)为了宣传2018年世界杯,实现“足球进校园”的目标,任城区某中学计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)学校准备购进这两种品牌的足球共50个,并且B品牌足球的数量不少于A品牌足球数量的4倍,请设计出最省钱的购买方案,求该方案所需费用,并说明理由.21.(6分)解下列方程(1);(2);(3).22.(8分)为了加强公民的节水意识,合理利用水资源,各地采取价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9,10月份的用水量和所交水费如下表所示:月份用水量(m3收费(元)957.510927设某户每月用水量x(立方米),应交水费y(元)1求a,c的值,当x≤6,x>6时,分别写出y与x的函数关系式.2若该户11月份用水量为8立方米,求该11月份水费多少元?23.(8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m.(点A,E,C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)24.(8分)解不等式组,并求出其整数解.25.(10分)解不等式组.26.(10分)在平面直角坐标系中,点的坐标为,点在轴上,直线经过点,并与轴交于点,直线与相交于点;(1)求直线的解析式;(2)点是线段上一点,过点作交于点,若四边形为平行四边形,求点坐标.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

再根据直角三角形斜边上的中线等于斜边的一半可得BD=AC.【详解】∵BD是斜边AC边上的中线,∴BD=AC=×=.故选D.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.2、D【解析】

根据图象和系数的关系确定m<0且直线经过点(2,0),将(2,0)代入求得.【详解】解:根据题意,m<0且直线经过点(2,0),∴,∴,∴m<0,n>0,故选:D.【点睛】本题考查了一次函数图象和系数的关系,一次函数图象上点的坐标特征,能够准确理解题意是解题的关键.3、A【解析】

根据平行四边形、菱形的判定和性质一一判断即可【详解】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点睛】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解析】

本题考查了一次函数的解析式,设为,把k和b代入即可.【详解】设函数解析式为:,由题意得,k=0.2,b=28,∴函数关系式为:.故选:C.【点睛】本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.5、B【解析】

根据平行四边形性质证,△AEF≌△AEB,EF=EB,AB=AF=1,再证△DEF≌△CEB,得BC=DF,可得AF=AD+DF=AD+BC=2BC=1.【详解】解:因为,四边形ABCD是平行四边形,所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F因为,的平分线与DC交于点E,所以,∠FAE=∠BAE,∠AEB=∠AEF所以,△AEF≌△AEB所以,EF=EB,AB=AF=1所以,△DEF≌△CEB所以,BC=DF所以,AF=AD+DF=AD+BC=2BC=1所以,BC=2.1.故选B.【点睛】本题考核知识点:平行四边形、全等三角形.解题关键点:熟记平行四边形性质、全等三角形判定和性质.6、B【解析】

根据最简二次根式的定义即可判断.【详解】A.=2,故不是最简二次根式;B.是最简二次根式;C.根式含有分数,不是最简二次根式;D.有可以开方的m2,不是最简二次根式.故选B.【点睛】此题主要考查最简二次根式的判断,解题的关键是熟知最简二次根式的定义.7、D【解析】

根据直角三角形的性质即可求解.【详解】若ABC又AB+C=180°∴2∠C=180°,得∠C=90°,故为直角三角形,故选D.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.8、A【解析】

根据轴对称图形和中心对称图形的定义解答即可.【详解】解:A.是中心对称图形,不是轴对称图形,故A符合题意;B.是中心对称图形,也是轴对称图形,故B不符合题意;C.是中心对称图形,也是轴对称图形,故C不符合题意;D.是轴对称图形,不是中心对称图形,故D不合题意.故选A.【点睛】本题考查了中心对称和轴对称图形的定义.解题的关键是掌握中心对称和轴对称图形的定义.9、B【解析】

根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.【详解】∵四边形ABCD是平行四边形,∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==1.故选:B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.10、A【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两短边的平方和是否等于最长边的平方即可.【详解】解:A.12+12=()2,能构成直角三角形,故符合题意;B.52+42≠62,不能构成直角三角形,故不符合题意;C.62+82≠112,不能构成直角三角形,故不符合题意;D.122+52≠152,不能构成直角三角形,故不符合题意.故选A.【点睛】本题考查了勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.二、填空题(每小题3分,共24分)11、1.【解析】

根据平均数的定义列出方程,解方程可得.【详解】∵数据6、4、a、3、2的平均数是5,∴,解得:a=1,故答案为:1.【点睛】本题主要考查算术平均数的计算,熟练掌握算术平均数的定义是解题的关键.12、0(答案不唯一)【解析】

利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【详解】△=62-4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,所以m=0满足条件.故答案为:0(答案不唯一).【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13、1【解析】

根据根与系数的关系得到x1+x2=1,x1×x2=﹣1,然后利用整体思想进行计算.【详解】解:∵x1、x2是方程x2﹣x﹣1=1的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=1.故答案为:1.【点睛】此题考查根与系数的关系,解题关键在于得到x1+x2=1,x1×x2=﹣1.14、【解析】

设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【详解】解:设长为3x,宽为2x,由题意,得:5x+20≤160,解得:x≤28,故行李箱宽度的最大值是28×2=56cm.故答案为:56cm.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.15、1【解析】

解:设小明一共买了x本笔记本,y支钢笔,根据题意,可得,可求得y≤因为y为正整数,所以最多可以买钢笔1支.故答案为:1.16、或14【解析】

根据点P所在的位置分类讨论,分别画出图形,利用平行四边形的对边相等列出方程,从而求出结论.【详解】解:①当点P在线段BE上时,∵AF∥BE∴当AD=BC时,此时四边形ABCD为平行四边形由题意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=BE-CE=(14-2x)cm∴x=14-2x解得:x=;②当点P在EB的延长线上时,∵AF∥BE∴当AD=CB时,此时四边形ACBD为平行四边形由题意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=CE-BE=(2x-14)cm∴x=2x-14解得:x=14;综上所述:当秒或14秒时,以,,,为顶点的四边形是平行四边形.故答案为:秒或14秒.【点睛】此题考查的是平行四边形的性质和动点问题,掌握平行四边形的对边相等和行程问题中的公式是解决此题的关键.17、1.【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,也是中心对称图形。故正确B.不是轴对称图形,也不是中心对称图形。故错误;C.不是轴对称图形,不是中心对称图形。故错误;D.是轴对称图形,不是中心对称图形。故错误。故答案为:1【点睛】此题考查中心对称图形,轴对称图形,难度不大18、1【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为=1,故答案为:1.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.三、解答题(共66分)19、a-b【解析】

利用分式的基本性质化简即可.【详解】===.【点睛】此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.20、(1)A品牌的足球的单价为40元,B品牌的足球的单价为100元(2)当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元【解析】

(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列二元一次方程组求解可得;(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,根据“B品牌足球的数量不少于A品牌足球数量的4倍”列不等式求出a的范围,再由购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000知当a越大,购买的总费用越少,据此可得.【详解】解:(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,根据题意,得:解得:答:A品牌的足球的单价为40元,B品牌的足球的单价为100元.(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,根据题意,得:50﹣a≥4a,解得:a≤10,∵购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000,∴当a越大,购买的总费用越少,所以当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元.【点睛】本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系和不等关系,并据此列出方程或不等式.21、(1);(2),;(3),.【解析】

(1)直接利用去分母进而解方程得出答案;

(2)直接利用提取公因式法分解因式解方程即可;

(3)直接利用配方法解方程得出答案.【详解】(1)经检验,是原方程的根.(2),或,(3),【点睛】此题主要考查了分式方程和一元二次方程的解法,正确掌握相关解题方法是解题关键.22、(1)y=6x-27;(2)21元.【解析】

(1)依照题意,当x≤6时,y=ax;当x>6时,y=6a+c(x-6),分别把对应的x,y值代入求解可得解析式;(2)将x=8代入(1)题中x>6的函数关系式,求出y的值即可.【详解】解:(1)当x≤6时,设y=ax,∵x=5时,y=7.5,∴5a=7.5,∴a=1.5,∴当x≤6时,y与x的函数关系式为y=1.5x,当x>6时,设y=1.5×6+cx-6,∵x=9时,y=27,∴1.5×6+9-6∴c=6,

∴当x>6时,y与x的函数关系式为y=6x-27;(2)当x=8时,y=6×8-27=21,∴该户11月份水费是21元.故答案为:(1)y=6x-27;(2)21元.【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.23、21.1米.【解析】试题分析:将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的相似比,列出方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论