版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省肇庆市2024年八年级下册数学期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列运算正确的是()A. B. C. D.2.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A. B. C. D.3.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁5.下列命题正确的是()A.有两个角是直角的四边形是矩形;B.两条对角线相等的四边形是矩形;C.两条对角线垂直且相等的四边形是矩形;D.四个角都是直角的四边形是矩形;6.如图,在中,已知,,平分交边于点,则边的长等于()A.4cm B.6cm C.8cm D.12cm7.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为()A.0 B.1 C.2 D.48.的倒数是()A. B. C. D.9.我市四月份某一周每天的最高气温(单位:℃)统计如下:29,30,25,27,25,则这组数据的中位数与众数分别是()A.25;25B.29;25C.27;25D.28;2510.下列式子中,是二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在RtACB中,∠C=90°,AB=2,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则ABD的面积为_____.12.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.13.当x=_________时,分式的值为1.14.若反比例函数y=(2k-1)的图象在二、四象限,则k=________.15.矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.17.关于x的分式方程的解为非正数,则k的取值范围是____.18.若实数、满足,则以、的值为边长的等腰三角形的周长为。三、解答题(共66分)19.(10分)如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.(1)若AC=16,CD=10,求DE的长.(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证:2DH=CF.20.(6分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:品种项目单价(元/尾)养殖费用(元/尾)普通鱼苗0.51红色鱼苗11设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元.(1)写出y(元)与x(尾)之间的函数关系式;(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?21.(6分)某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.(1)1辆大货车和1辆小货车一次可以分别运货多少吨?(2)有46.4吨货物需要运输,货运公司拟安排大小货车共10辆(要求两种货车都要用),全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?22.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.23.(8分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.24.(8分)记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).(1)写出y关于x的函数表达式及自变量x的取值范围;(2)在如图直角坐标系中,用描点法画出所求函数图象;(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.25.(10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨吨及以下超过17吨但不超过30吨的部分超过30吨的部分说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.(1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?26.(10分)某商城经销一款新产品,该产品的进价6元/件,售价为9元/件.工作人员对30天销售情况进行跟踪记录并绘制成图象,图中的折线OAB表示日销售量(件)与销售时间(天)之间的函数关系.(1)第18天的日销售量是件(2)求与之间的函数关系式,并写出的取值范围(3)日销售利润不低于900元的天数共有多少天?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.【详解】A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.故D正确.故选D.【点睛】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.2、A【解析】
先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.【详解】设A点坐标为(x,1),把A(x,1)代入y=1x,得1x=1,解得x=1,则A点坐标为(1,1),所以当x>1时,1x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(1,0),∴x<1时,kx+b>0,∴不等式0<kx+b<1x的解集为1<x<1.故选:A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、B【解析】
先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.4、A【解析】试题分析:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<考点:1.方差;2.算术平均数.5、D【解析】
利用矩形的判定定理及矩形的定义进行判断后即可确定本题的答案.【详解】A.有三个角是直角的四边形是矩形,故错误;B.两条对角线相等的平行四边形是矩形,故错误;C.两条对角线互相垂直的四边形可能是梯形,故错误;D.四个角都是直角的四边形是矩形,正确,故选D.【点睛】本题考查矩形的判定定理及矩形的定义,它们有:①有三个角是直角的四边形是矩形;②对角线互相平分且相等的四边形是矩形;③有一个角为直角的平行四边形是矩形;④对角线相等的平行四边形是矩形。6、A【解析】
首先根据平行四边形的性质,得出,,,进而得出∠DAE=∠AEB,然后得出∠BAE=∠AEB,根据等腰三角形的性质,即可得解.【详解】∵平行四边形ABCD∴,,∴∠DAE=∠AEB又∵平分∴∠BAE=∠DAE∴∠BAE=∠AEB∴AB=BE又∵,,∴CD=4cm故答案为A.【点睛】此题主要考查平行四边形和等腰三角形的性质,熟练掌握,即可解题.7、B【解析】①样本的方差越小,波动性越小,说明样本稳定性越好,故①正确;②一组数据的众数不只有一个,有时有好几个,故②错误;③一组数据的中位数不一定是这组数据中的某一数,若这组数据有偶数个即是将一组数据从小到大重新排列后最中间两个数的平均数,故③错误;④数据:2,2,3,2,2,5的众数为2,故④错误;⑤一组数据的方差不一定是正数,也可能为零,故⑤错误.所以说法正确的个数是1个.故选B.8、B【解析】
直接利用倒数的定义进而得出答案.【详解】∵×()=1,∴的倒数.故选B.【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键.9、C【解析】25出现了2次,出现的次数最多,则众数是25;把这组数据从小到大排列25,25,27,29,30,最中间的数是27,则中位数是27;故选C.10、D【解析】
根据二次根式的定义分别进行判定即可.【详解】解:A、根指数为3,属于三次根式,故本选项错误;B、π不是根式,故本选项错误;C、无意义,故本选项错误;D、符合二次根式的定义,故本选项正确.故选:D.【点睛】本题考查了二次根式的定义:形如(a≥0)叫二次根式.二、填空题(每小题3分,共24分)11、【解析】
过点D作DH⊥AB于H.利用角平分线的性质定理求出DH,然后根据三角形的面积公式即可解决问题.【详解】解:如图,过点D作DH⊥AB于H.∵DC⊥BC,DH⊥AB,BD平分∠ABC,∴DH=CD=1,∴S△ABD=•AB•DH=×2×1=,故答案为:.【点睛】本题主要考查角平分线的尺规作图及性质,掌握角平分线的性质是解题的关键.12、【解析】
直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<1.故答案为:x<1.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.13、2【解析】
直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【详解】∵分式的值为1,∴x2-4=1,x+2≠1,解得:x=2.故答案为:2.【点睛】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.14、1【解析】
根据反比例函数的定义,次数为-1次,再根据图象在二、四象限,2k-1<1,求解即可.【详解】解:根据题意,3k2-2k-1=-1,2k-1<1,
解得k=1或k=且k<,
∴k=1.
故答案为1.【点睛】本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.15、7.2cm或cm【解析】①边长3.6cm为短边时,
∵四边形ABCD为矩形,
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB=3.6cm,
∴AC=BD=2OA=7.2cm;
②边长3.6cm为长边时,
∵四边形ABCD为矩形
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB,BD=2OB,∠ABD=60°,
∴OB=AB=,∴BD=;故答案是:7.2cm或cm.16、9【解析】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E.
F分别是AO、AD的中点,(cm),故答案为2.5.17、k≥1且k≠3.【解析】
分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.【详解】去分母得:x+k+2x=x+1,
解得:x=,
由分式方程的解为非正数,得到⩽0,且≠−1,
解得:k≥1且k≠3,
故答案为k≥1且k≠3.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.18、20。【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8。①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20。所以,三角形的周长为20。三、解答题(共66分)19、(1)210(2)见解析【解析】
(1)连接BD交AC于K.想办法求出DK,EK,利用勾股定理即可解决问题;
(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.想办法证明∠CDH=∠HGJ=45°,可得DH=2QH解决问题.【详解】(1)解:连接BD交AC于K.∵四边形ABCD是菱形,∴AC⊥BD,AK=CK=8,在Rt△AKD中,DK=AD2-A∵CD=CE,∴EK=CE﹣CK=10﹣8=2,在Rt△DKE中,DE=DK2+EK(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.∵CH⊥GF,∴∠GJF=∠CQH=∠GPC=90°,∴∠QCH=∠JGF,∵CH=GF,∴△CQH≌△GJF(AAS),∴QH=CJ,∵GC=GF,∴∠QCH=∠JGF=∠CGJ,CJ=FJ=12CF∵GC=CH,∴∠CHG=∠CGH,∴∠CDH+∠QCH=∠HGJ+∠CGJ,∴∠CDH=∠HGJ,∵∠GJF=∠CQH=∠GPC=90°,∴∠CDH=∠HGJ=45°,∴DH=2QH,∴2DH=2QH=CF.【点睛】本题考查菱形的性质、勾股定理、全等三角形的判定(AAS)和性质,解题的关键是掌握菱形的性质、勾股定理、全等三角形的判定(AAS)和性质.20、(1);(2)养殖鱼苗的最低费用是3300元【解析】
(1)根据题意和表格中的数据可以写出y与x的函数关系式,本题得以解决;(2)根据题意和(1)中的关系式,利用一次函数的性质可以解答本题.【详解】(1)设普鱼苗为x尾,则红色鱼苗为尾,∴;(2)由题意知:,∴解得,∵函数,y随x值的增大而减小,∴当时,y的值最小,∴,∴养殖鱼苗的最低费用是3300元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质解答.21、(1)1辆大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)货运公司安排大货车8辆,小货车2辆,最节省费用.【解析】
(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆.根据10辆货车需要运输46.4吨货物列出不等式.【详解】解:(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据题意,得,解得,所以大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆,根据题意可得:5m+3.5(10-m)≥46.4,解得:m≥7.6,因为m是正整数,且m≤10,所以m=8或9或10,所以10-m=2或1或0,方案一:所需费用=500×8+300×2=4600(元),方案二:所需费用=500×9+300×1=4800(元),方案三:所需费用=500×10+300×0=5000(元),因为4600<4800<5000,所以货运公司安排大货车8辆,则安排小货车2辆,最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22、(1)证明见解析(2)-1【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,△ACF≌△ABEBE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.23、(1);(2);(3)P(,0).【解析】
(1)把A的坐标代入即可求出结果;(2)先把B的坐标代入得到B(4,1),把A和B的坐标,代入即可求得一次函数的解析式;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.【详解】(1)把A(1,4)代入得:m=4,∴反比例函数的解析式为:;(2)把B(4,n)代入得:n=1,∴B(4,1),把A(1,4),B(4,1)代入,得:,∴,∴一次函数的解析式为:;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),∴直线AB′的解析式为:,当y=0时,x=,∴P(,0).24、(1)y(x>0);(2)答案见解析;(3)8.【解析】
(1)根据平行四边形的面积公式,列出函数关系式即可;(2)利用描点法画出函数图象即可;(3)如图作DE⊥BC交BC的延长线于E.解直角三角形求出CD即可.【详解】(1)由题意,xy=18,所以y(x>0);(2)列表如下:函数图象如图所示:(3)如图作DE⊥BC交BC的延长线于E,∵BC=4,∴DE,∵BD,∴BE6,∴EC=2,∴CD,∴此平行四边形的周长=8.【点睛】本题考查了反比例函数的性质、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题25、(1)y=;(2)40吨.【解析】
(1)由水费=自来水费+污水处理,分段得出y与x的函数关系式;(2)先判断用水量超过30吨,继而再由水费不超过184,可得出不等式,解出即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《建筑分析级王子》课件
- 方转账协议范本 2篇
- 二零二四年文化艺术活动组织与推广协议
- 《爱护古建筑》课件
- 2024年度二手房购房物业维修及保养协议3篇
- 2024年度广告位买卖合同2篇
- 吊装司索人员安全技术操作规程
- 产前诊断及方法
- 2024年度二手房买卖合同风险评估报告
- 2024年度技术转让与合作合同
- 肺胀中医病历
- 风电场工作安全培训ppt课件
- 单晶金刚石项目建设方案与投资计划(参考范文)
- 植物光谱反射率曲线规律及影响因素
- IQC(来料)检测报告模板
- 光伏组件拆卸及转运方案(二)
- 沥青检测报告(共10页)
- 心血管疾病患者营养评估与饮食指导
- 家庭教育讲座(课堂PPT)
- 解一元一次方程复习课PPT精品文档
- 毕业设计(论文)基于PLC自动门控制系统的设计
评论
0/150
提交评论