版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩市永定区2024年八年级数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各式中,与3是同类二次根式的是()A.6 B.12 C.15 D.182.在某人才招聘会上,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,根据这个要求,听、说、读、写”四项技能测试比较合适的权重设计是A. B. C. D.3.下列式子从左到右的变形一定正确的是()A. B. C. D.4.已知点在直线上,则关于的不等式的解集是()A. B. C. D.5.某小组5名同学在一周内参加家务劳动的时间如下表,关于“劳动时间”的这组数据,以下说法正确的是().劳动时间(小时)33.244.5人数1121A.中位数是4,平均数是3.74;B.中位数是4,平均数是3.75;C.众数是4,平均数是3.75;D.众数是2,平均数是3.8.6.去分母解关于的方程产生增根,则的取值为()A.-1 B.1 C.3 D.以上答案都不对7.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.138.下列二次根式中,化简后能与合并的是A. B. C. D.9.一次函数与的图象如图所示,则下列结论①k<0;②a>0;③不等式x+a<kx+b的解集是x<3;④a−b=3k−3中,正确的个数是()A.3个 B.2个 C.1个 D.4个10.如图,在的方格纸中,两点在格点上,线段绕某点逆时针旋转角后得到线段,点与对应,则角的大小为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,S△AOE=3,S△BOF=5,则▱ABCD的面积是_____.12.已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为_____.13.已知方程的一个根为2,则________.14.若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.15.如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=______秒(s)时,点P、Q、C、D构成平行四边形.16.不等式2x-1>5的解集为.17.为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.18.如果一组数据x1,x2,…,xn的方差是4,则另一组数据x1+3,x2+3,…,xn+3的方差是_____.三、解答题(共66分)19.(10分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.20.(6分)列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?21.(6分)在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.册数人数(1)求这个数据的平均数、众数和中位数.(2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.22.(8分)如图,等边△ABC的边长6cm.①求高AD;②求△ABC的面积.23.(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?24.(8分)求的值.解:设x=,两边平方得:,即,x2=10∴x=.∵>0,∴=.请利用上述方法,求的值.25.(10分)某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.(1)1辆大货车和1辆小货车一次可以分别运货多少吨?(2)有46.4吨货物需要运输,货运公司拟安排大小货车共10辆(要求两种货车都要用),全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?26.(10分)如图,长方形中,点沿着边按.方向运动,开始以每秒个单位匀速运动、秒后变为每秒个单位匀速运动,秒后恢复原速匀速运动,在运动过程中,的面积与运动时间的函数关系如图所示.(1)直接写出长方形的长和宽;(2)求,,的值;(3)当点在边上时,直接写出与的函数解析式.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
先化简二次根式,再根据同类二次根式的定义判定即可.【详解】解:A、6与3的被开方数不同,不是同类二次根式,故本选项错误.
B、12=23,与3的被开方数相同,是同类二次根式,故本选项正确.
C、15与3的被开方数不同,不是同类二次根式,故本选项错误.
D、18=32,与3的被开方数不同,不是同类二次根式,故本选项错误.
故选:B.【点睛】本题考查同类二次根式,解题的关键是二次根式的化简.2、A【解析】
数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.依次即可求解.【详解】解:人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,听、说、读、写”四项技能测试比较合适的权重设计是.故选:.【点睛】本题考查加权平均数,解题的关键是明确题意,找出所求问题需要的条件,会计算加权平均数.3、D【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.【详解】A.无法进行运算,故A项错误.B.当c=0时无法进行运算,故B项错误.C.无法进行运算,故C项错误.D.,故D项正确.故答案为:D【点睛】本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.4、C【解析】
一次函数与x轴的交点横坐标为−1,且函数值y随自变量x的增大而增大,根据一次函数的性质可判断出解集.【详解】解:点A(−1,0)在直线y=kx+b(k>0)上,∴当x=−1时,y=0,且函数值y随x的增大而增大;∴关于x的不等式kx+b>0的解集是x>−1.故选:C.【点睛】本题考查了一次函数与一元一次不等式.由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.5、A【解析】
平均数是指在一组数据中所有数据之和再除以数据的个数,结合图表中的数据即可求出这组数据的平均数了;观察图表可知,只有劳动时间是4小时的人数是2,其他都是1人,据此即可得到众数,总共有5名同学,则排序后,第3名同学所对应的劳动时间即为中位数,【详解】观察表格可得,这组数据的中位数和众数都是4,平均数=(3+3.2+4×2+4.5)÷5=3.74.故选A.【点睛】此题考查加权平均数,中位数,解题关键在于看懂图中数据6、A【解析】
分式方程去分母转化为整式方程,由分式方程有增根确定出x的值,代入整式方程计算即可求出m的值.【详解】方程两边乘以x-2得,x-3=m,
∵分式方程有增根,
∴x-2=0,即x=2,
∴2-3=m,
∴m=-1.
故选A..【点睛】本题考查了分式方程的增根:先把分式方程两边乘以最简公分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入最简公分母中,若其值不为零,则此解为原分式方程的解;若其值为0,则此整式方程的解为原分式方程的增根.7、C【解析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.
解答:360°÷30°=1.
故选C.
“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.8、B【解析】
根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答.【详解】、,不能与合并,故本选项错误;、,能与合并,故本选项正确;、,不能与合并,故本选项错误;、,不能与合并,故本选项错误.故选.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.9、A【解析】
根据一次函数的性质对①②进行判断;根据一次函数与一元一次不等式的关系,利用两函数图象的位置对③④进行判断,联立方程解答即可.【详解】∵一次函数的图象经过第二、四象限,∴k<0,所以①正确;∵一次函数的图象与y轴的交点在x轴下方,∴a<0,所以②错误;∵x3时,一次函数=kx+b的图象都在函数=x+a的图象上方,∴不等式kx+bx+a的解集为x3,所以③正确;∵y=3+a,y=3k+ba=y−3,b=y−3k,∴a−b=3k−3,故④正确;故选:A【点睛】此题考查一次函数与一元一次不等式,解题关键在于利用一次函数的性质10、C【解析】
如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【详解】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.【点睛】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.二、填空题(每小题3分,共24分)11、1【解析】
分析:利用平行四边形的性质可证明△AOF≌△COE,所以可得△COE的面积为3,进而可得△BOC的面积为8,又因为△BOC的面积=▱ABCD的面积,进而可得问题答案.详解::∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠BCA,∠AEF=∠CFE,又∵AO=CO,在△AOE与△COF中∴△AOE≌△COF∴△COEF的面积为3,∵S△BOF=5,∴△BOC的面积为8,∵△BOC的面积=▱ABCD的面积,∴▱ABCD的面积=4×8=1,故答案为1.点睛:本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点:①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.12、y=﹣3x【解析】
设函数解析式为y=kx,把点(-1,3)代入利用待定系数法进行求解即可得.【详解】设函数解析式为y=kx,把点(-1,3)代入得3=-k,解得:k=-3,所以解析式为:y=-3x,故答案为y=-3x.【点睛】本题考查了利用待定系数法求函数解析式,熟练掌握待定系数法是解题的关键.13、【解析】
把x=2代入原方程,得到一个关于k的方程,求解可得答案.【详解】解:把x=2代入方程3x2+kx-2=0得3×4+2k-2=0,
解得k=-1.
故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14、9【解析】
设多边形的边数为n,先根据多边形的内角和求出多边形的边数,再根据周长即可求出边长.【详解】设多边形的边数为n,由题意得(n-2)·180°=900°解得n=7,则它的边长是63÷7=9.【点睛】本题考查的是多边形的内角和,解答的关键是熟练掌握多边形的内角和公式:(n-2)·180°.15、3或6【解析】
根据点P的位置分类讨论,分别画出对应的图形,根据平行四边形的对边相等列出方程即可求出结论.【详解】解:当P运动在线段AD上运动时,AP=3t,CQ=t,∴DP=AD-AP=12-3t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12-3t=t,∴t=3秒;当P运动到AD线段以外时,AP=3t,CQ=t,∴DP=3t-12,∵四边形PDCQ是平行四边形,∴PD=CQ,∴3t-12=t,∴t=6秒,故答案为:3或6【点睛】此题考查的是平行四边形与动点问题,掌握平行四边形的对应边相等和分类讨论的数学思想是解决此题的关键.16、x>1【解析】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>1.故答案为x>1.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.17、1【解析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:根据题意得:
90×50%+80×30%+85×20%
=45+24+17
=1(分).
答:该选手的最后得分是1分.
故答案为:1.【点睛】本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.18、1【解析】试题分析:数据x1,x2,…,xn的平均数设为a,则数据x1+3,x2+3,…,xn+3的平均数为a+3,根据方差公式:S2=[(x1-a)2+(x2-a)2+…(xn-a)2]=1.则数据x1+3,x2+3,…,xn+3的方差S′2={[(x1+3)-(a+3)]2+[(x2+3)-(a+3)]2+…(xn+3)-(a+3)]2}=[(x1-a)2+(x2-a)2+…(xn-a)2]=1.故答案为1.点睛:此题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.三、解答题(共66分)19、(1)y=8x(0≤x<20)或y=6.4x+1(x≥20);(2)当购买数量x=35时,W总费用最低,W最低=16元.【解析】
(1)根据函数图象找出点的坐标,结合点的坐标利用待定系数法求出函数解析式即可;(2)根据B种苗的数量不超过35棵,但不少于A种苗的数量可得出关于x的一元一次不等式组,解不等式组求出x的取值范围,再根据“所需费用为W=A种树苗的费用+B种树苗的费用”可得出W关于x的函数关系式,根据一次函数的性质即可解决最值问题.【详解】(1)当0≤x<20时,设y与x的函数关系式为:y=mx,把(20,160)代入y=mx,得160=mx,解得m=8,故当0≤x<20时,y与x的函数关系式为:y=8x;当x≥20时,设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+1.∴y与x的函数关系式为y=8x(0≤x<20)或y=6.4x+1(x≥20);(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+1+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=16(元).【点睛】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次不等式组,解决该题型题目时,根据函数图象找出点的坐标,再利用待定系数法求出函数解析式是关键.20、原计划每天加工20套.【解析】
设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x套,由题意得:解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用21、(1)平均数为2;众数为3;中位数为2;(2)216人.【解析】
(1)根据平均数、众数、中位数的概念求解;(2)根据样本数据,估计本次活动中读书多于2册的人数.【详解】解:(1)由题意得,平均数为:,读书册数为3的人数最多,即众数为3,第25人和第26人读数厕所的平均值为中位数,及中位数为:,(2)(人.答:估计七年级读书多于2册的有216人.【点睛】本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.22、(1)(2)【解析】本题考查了等边三角形的性质和勾股定理.①中,运用等腰三角形的三线合一和勾股定理;②中,根据三角形的面积公式进行计算即可.23、(1)6;(2)40或400【解析】
(1)设通道的宽x米,由图中所示可得通道面积为2×28x+2(52-2x)x,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a元,则少租出个车位,根据月租金收入为14400元列方程求出a值即可.【详解】(1)设通道的宽x米,根据题意得:2×28x+2(52-2x)x+640=52×28,整理得:x2-40x+204=0,解得:x1=6,x2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a元,则少租出个车位,根据题意得:(200+a)(64-)=14400,整理得:a2-440a+16000=0,解得:a1=40,a2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.24、【解析】
根据题意给出的解法即可求出答案即可.【详解】设x=+,两边平方得:x2=()2+()2+2,即x2=4++4﹣+6,x2=14∴x=±.∵+>0,∴x=.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25、(1)1辆大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)货运公司安排大货车8辆,小货车2辆,最节省费用.【解析】
(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆.根据10辆货车需要运输46.4吨货物列出不等式.【详解】解:(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据题意,得,解得,所以大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆,根据题意可得:5m+3.5(10-m)≥46.4,解得:m≥7.6,因为m是正整数,且m≤10,所以m=8或9或10,所以10-m=2或1或0,方案一:所需费用=500×8+300×2=4600(元),方案二:所需费用=500×9+300×1=4800(元),方案三:所需费用=500×10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 棒球击球笼网市场发展现状调查及供需格局分析预测报告
- 蔬菜盘市场发展预测和趋势分析
- 2024年度农业种植技术转让合同:高效节能种植技术
- 2024年度环保设施建造及运营管理合同
- 2024年度物流服务合同:某物流公司为其提供物流服务的合同
- 2024年度地坪施工人员培训合同
- 2024年度深海探测设备安装施工合同
- 2024年度版权购买合同:摄影作品著作权购买及使用权
- 2024年度技术开发合同:智能手机操作系统定制
- 2024年度演艺经纪合同(艺人推广与代理)
- 道路交通安全警示教育通用ppt
- 初中生物-遗传的物质基础教学设计学情分析教材分析课后反思
- 中药饮片出库单
- 2017修改学生顶岗实习管理办法
- 国开2023春《语言学概论》形考任务1-3+大作业参考答案
- 天然气输送管道首站门站简介演示文稿
- 六年级上册《比》《圆》测试题(A4版)
- 《无人机组装与调试》第5章-多旋翼无人机调试
- 【校园快递管理系统的设计与实现(论文)12000字】
- 神经病学 ppt课件 癫痫
- 竖向设计图课件
评论
0/150
提交评论