2024年陕西省延安市八年级下册数学期末综合测试试题含解析_第1页
2024年陕西省延安市八年级下册数学期末综合测试试题含解析_第2页
2024年陕西省延安市八年级下册数学期末综合测试试题含解析_第3页
2024年陕西省延安市八年级下册数学期末综合测试试题含解析_第4页
2024年陕西省延安市八年级下册数学期末综合测试试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年陕西省延安市八年级下册数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.定义新运算“”如下:当时,;当时,,若,则的取值范围是()A.或 B.或C.或 D.或2.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形3.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.3,5,6 B.2,3,5 C.5,6,7 D.6,8,104.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A.11cmB.12cmC.13cmD.14cm5.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形 B.等腰直角三角形C.平行四边形 D.菱形6.如图,在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点.已知四边形A4B2C4D2的面积为18,则平行四边形ABCD的面积为()A.22 B.25 C.30 D.157.在平面直角坐标系中,若点在第一象限内,则点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.下列从左到右的变形,属于因式分解的是()A. B.C. D.9.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A.16 B.25 C.144 D.16910.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.211.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±212.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.一组数据2,3,4,5,3的众数为__________.14.定义运算ab=a2﹣2ab,下面给出了关于这种运算的几个结论:①25=﹣16;②是无理数;③方程xy=0不是二元一次方程:④不等式组的解集是﹣<x<﹣.其中正确的是______(填写所有正确结论的序号)15.如图,将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,写出旋转后BC的对应线段_____.16.已知反比例函数,当时,y的取值范围是________.17.如图,点关于原点中心对称,且点在反比例函数的图象上,轴,连接,则的面积为______.18.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,如果四边形的中点四边形是矩形,则对角线_____.三、解答题(共78分)19.(8分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.20.(8分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?21.(8分)如图,中,.(1)用尺规作图作边上的垂直平分线,交于点,交于点(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下,连接,若则的周长是.(直接写出答案)22.(10分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(2)若反比例函数y=(k≠0)的图象经过点H,则k=;(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。下图为点P、Q的“涵矩形”的示意图.(1)点B的坐标为(3,0);①若点P的横坐标为32,点Q与点B重合,则点P、Q的“涵矩形”的周长为②若点P、Q的“涵矩形”的周长为6,点P的坐标为(1,4),则点E(2,1),F(1,2),G(4,0)中,能够成为点P、Q的“涵矩形”的顶点的是.(2)四边形PMQN是点P、Q的“涵矩形”,点M在△AOB的内部,且它是正方形;①当正方形PMQN的周长为8,点P的横坐标为3时,求点Q的坐标.②当正方形PMQN的对角线长度为/2时,连结OM.直接写出线段OM的取值范围.24.(10分)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.

(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;

(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.25.(12分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.(1)试探究线段AG与CE的大小关系,并证明你的结论;(2)若AG恰平分∠BAC,且BE=1,试求AB的长;(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.26.对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于()A.﹣1 B.±2 C.1 D.±1

参考答案一、选择题(每题4分,共48分)1、D【解析】

分3>x+2和3<x+2两种情况,根据新定义列出不等式求解可得.【详解】当3>x+2,即x<1时,3(x+2)+x+2>0,

解得:x>-2,

∴-2<x<1;

当3<x+2,即x>1时,3(x+2)-(x+2)>0,

解得:x>-2,

∴x>1,

综上,-2<x<1或x>1,

故选:D.【点睛】考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.2、C【解析】

根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【详解】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.3、D【解析】

判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.【详解】A.32+52=34≠62,故不能组成直角三角形,错误;B.22+32≠52,故不能组成直角三角形,错误;C.52+62≠72,故不能组成直角三角形,错误;D.62+82=100=102,故能组成直角三角形,正确.故选D.【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、C【解析】试题分析:∵侧面对角线BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大长度为13m,故选C.考点:勾股定理的应用.5、D【解析】

按照轴对称图形和中心对称图形的定义逐项判断即可.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.6、C【解析】

可以设平行四边形ABCD的面积是S,根据等分点的定义利用平行四边形ABCD的面积减去四个角上的三角形的面积,就可表示出四边形A4B2C4D2的面积,从而得到两个四边形面积的关系,即可求解.【详解】解:设平行四边形ABCD的面积是S,设AB=5a,BC=3b.AB边上的高是3x,BC边上的高是5y.

则S=5a•3x=3b•5y.即ax=by=.

△AA4D2与△B2CC4全等,B2C=BC=b,B2C边上的高是•5y=4y.

则△AA4D2与△B2CC4的面积是2by=S.

同理△D2C4D与△A4BB2的面积是.

则四边形A4B2C4D2的面积是S-S-S--=S,即S=18,

解得S=1.

则平行四边形ABCD的面积为1.

故选:C.【点睛】本题考查平行四边形的性质和三角形面积计算,正确利用等分点的定义,得到两个四边形的面积的关系是解题的关键.7、C【解析】

根据各象限内点的坐标特征解答即可.【详解】解:由点A(a,b)在第一象限内,得

a>0,b>0,

由不等式的性质,得

-a<0,-b<0,

点B(-a,-b)所在的象限是第三象限,

故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】

A.从左到右的变形是整式乘法,不是因式分解;B.右边不是整式积的形式,不是因式分解;C.分解时右边括号中少了一项,故不正确,不符合题意;D.是因式分解,符合题意,故选D.【点睛】本题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.9、B【解析】

两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.【详解】两个阴影正方形的面积和为132-122=25,所以B选项是正确的.【点睛】本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.10、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.11、C【解析】由题意可知:,解得:x=2,故选C.12、B【解析】试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:小强小华石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:.故选B.考点:概率公式.二、填空题(每题4分,共24分)13、1.【解析】

众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【详解】本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.故答案为1.【点睛】众数是指一组数据中出现次数最多的数据.14、【解析】

先认真审题.理解新运算,根据新运算展开,求出后再判断即可.利用题中的新定义计算即可得到结果.【详解】①25=22-2×2×5=-16,故①正确;②21=22-2×2×1=0,所以是有理数,故②错误;③xy=x2-2xy=0,是二元二次方程,不是二元一次方程,故③正确;④不等式组变形为,解得<x<,故④正确.故的答案为:①③④【点睛】本题考查了整式的混合运算的应用,涉及了开方运算,方程的判断,不等式组的解集等,解此题的关键是能理解新运算的意义,题目比较好,难度适中.15、B1C1.【解析】

根据旋转的性质解答即可.【详解】∵将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,∴△ABC≌△AB1C1,∴BC=B1C1,∴旋转后BC的对应线段是B1C1,故答案为:B1C1.【点睛】本题考查了旋转的性质,熟记旋转的各种性质以及旋转的三要素是解题的关键.16、【解析】

利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【详解】∵k=1>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=1,当x=2时,y=5,∴当1<x<2时,5<y<1.故答案为.【点睛】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.17、1【解析】

根据反比例函数的比例系数k的几何意义得到S△BOC=|k|=1,然后根据等底同高的三角形相等,得到S△AOC=S△BOC=1,即可求得△ABC的面积为1.【详解】解:∵BC⊥x轴,

∴S△BOC=|k|=1,

∵点A,B关于原点中心对称,

∴OA=OB,

∴S△AOC=S△BOC=1,

∴S△ABC=S△AOC+S△BOC=1,

故答案为:1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18、⊥【解析】

作出图形,根据三角形的中位线定理可得GH∥AC,同理可得EF∥AC,HG∥EF,HE∥GF,可得中点四边形是平行四边形,要想保证中点四边形是矩形,需要对角线互相垂直.【详解】解:∵H、G,分别为AD、DC的中点,

∴HG∥AC,

同理EF∥AC,

∴HG∥EF;

同理可知HE∥GF.

∴四边形EFGH是平行四边形.

当AC⊥BD时,AC⊥EH.

∴GH⊥EH.

∴∠EHG=90°.

∴四边形EFGH是矩形.

故答案为:⊥.【点睛】本题考查了三角形的中位线定理,矩形的判定,熟练运用三角形的中位线定理是解题的关键.三、解答题(共78分)19、1【解析】

根据题意甲看错了b,分解结果为(x+2)(x+4),可得a系数是正确的,乙看错了a,分解结果为(x+1)(x+9),b系数是正确的,在利用因式分解是等式变形,可计算的参数a、b的值.【详解】解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=1.【点睛】本题主要考查因式分解的系数计算,关键在于弄清那个系数是正确的.20、(1)见解析;(2)时,四边形CEDF是矩形.【解析】

(1)先证明△GED≌△GFC,从而可得GE=GF,再根据对角线互相平分的四边形是平行四边形即可证得结论;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=90°,求得BP=3cm,再证明△ABP≌△CDE,可得∠CED=∠APB=90°,再根据有一个角是直角的平行四边形是矩形即可得.【详解】(1)四边形ABCD是平行四边形,∴AD//BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵GD=GC,∴△GED≌△GFC,∴GE=GF,∵GD=GC,GE=GF,∴四边形CEDF是平行四边形;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=∠APC=90°,∵∠B=60°,∴∠PAB=90°-∠B=30°,∴BP=AB==3cm,四边形ABCD是平行四边形,∴∠CDE=∠B=60°,DC=AB=6cm,AD=BC=10cm,∵AE=7cm,∴DE=AD-AE=3cm=BP,∴△ABP≌△CDE,∴∠CED=∠APB=90°,又∵四边形CEDF是平行四边形,∴平行四边形CEDF是矩形,即当AE=7cm时,四边形CEDF是矩形.【点睛】本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.21、(1)见解析;(2)7.【解析】

(1)利用基本作图作的垂直平分线;(2)根据线段垂线平分线的性质得出,然后利用等线代换得到的周长.【详解】解:(1)如图,为所作:(2)就为边上的垂直平分线,的周长故答案为:.【点睛】本题考查了作图—基本作图:熟练掌握基本作图(做一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22、(1)(﹣,3)(2)(3)(,)或(﹣,5)或(,﹣)【解析】

(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的坐标.(2)由(1)可得OB、CM,可得B、C坐标,进而求得H点坐标,由反比例函数y=(k≠0)的图象经过点H,可求的k的值;(3)分别以CF为平行四边形的一边或者为对角线的情形进行讨论即可.【详解】(1)x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四边形ABCD是菱形,∴AC⊥BD,AE=EC==3,∴∠DCA=30°,∠EDC=60°,Rt△DEM中,∠DEM=30°,∴DM=DE=,∵OM⊥AB,∴S菱形ABCD=AC•BD=CD•OM,∴=6OM,OM=3,∴D(﹣,3);(2)∵OB=DM=,CM=6﹣=,∴B(,0),C(,3),∵H是BC的中点,∴H(3,),∴k=3×=;故答案为;(3)①∵DC=BC,∠DCB=60°,∴△DCB是等边三角形,∵H是BC的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2=CP,∴P(,);②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣,6),由①知:F(,2),由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣,6),F(,2),C(,3),∴P(,﹣);综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).【点睛】本题主要考查平行四边形、菱形的图像和性质,反比例函数的图像与性质等,综合性较大,需综合运用所学知识充分利用已知条件求解.23、(1)①1,②(1,2);(2)①(1,5)或(5,1),②5【解析】

(1)①根据题意求出PE,EQ即可解决问题.

②求出点P、Q的“涵矩形”的长与宽即可判断.

(2)①求出正方形的边长,分两种情形分别求解即可解决问题.

②点M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D.求出OM的最大值,最小值即可判断.【详解】解:(1)①如图1中,

由题意:矩形PEQF中,EQ=PF=3-32=32,

∵EP∥OA,

∴AP=PQ,

∴PE=QF=12OA=3,

∴点P、Q的“涵矩形”的周长=(3+32)×2=1.

②如图2中,∵点P、Q的“涵矩形”的周长为6,

∴邻边之和为3,

∵矩形的长是宽的两倍,

∴点P、Q的“涵矩形”的长为2,宽为1,

∵P(1,4),F(1,2),

∴PF=2,满足条件,

∴F(1,2)是矩形的顶点.(2)①如图3中,

∵点P、Q的“涵矩形”是正方形,

∴∠ABO=45°,

∴点A的坐标为(0,6),

∴点B的坐标为(6,0),

∴直线AB的函数表达式为y=-x+6,

∵点P的横坐标为3,

∴点P的坐标为(3,3),

∵正方形PMQN的周长为8,

∴点Q的横坐标为3-2=1或3+2=5,

∴点Q的坐标为(1,5)或(5,1).②如图4中,

∵正方形PMQN的对角线为2,

∴PM=MQ=1,

易知M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D,

∵OE=OF=5,

∴EF=52,

∵OD⊥EF,

∴ED=DF,

∴OD=12EF=522,

∴OM的最大值为5,最小值为522【点睛】本题属于四边形综合题,考查了矩形的判定和性质,正方形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.24、(1)①证明见解析;②;(2);(3).【解析】

(1)①由,推出,,推出四边形是平行四边形,再证明即可.②先证明,推出,延长即可解决问题.(2).只要证明是等边三角形即可.(3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形是矩形,,,,在和中,,,,,四边形是平行四边形,,,,四边形是菱形.②平分,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论