版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州砀山县联考2024年八年级数学第二学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误2.若a+c=b,那么方程ax2+bx+c=0(a≠0)必有一根是()A.1B.﹣1C.±1D.03.已知点P(m﹣3,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.4.函数y=ax﹣a的大致图象是()A. B. C. D.5.一次函数在平面直角坐标系内的图像如图所示,则k和b的取值范围是()A., B., C., D.,6.如图,已知平行四边形中,则()A. B. C. D.7.函数的自变量的取值范围是()A. B. C. D.8.如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是()A.31x+10x﹣1x1=540B.31x+10x=31×10﹣540C.(31﹣x)(10﹣x)=540D.(31﹣x)(10﹣x)=31×10﹣5409.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3 B. C. D.410.如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为()A.50° B.60° C.70° D.80°11.下列图案:其中,中心对称图形是()A.①② B.②③ C.②④ D.③④12.若式子有意义,则x的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,▱ABCD中,,,垂足为点若,则的度数为______.14.在甲、乙两名同学中选拔一人参加校园“中华诗词”大赛,在相同的测试条件下,两人5次测试成绩分别是:甲:79,86,82,85,83;乙:88,79,90,81,72;数据波动较小的一同学是_____.15.已知点,,直线与线段有交点,则的取值范围是______.16.如图,已知一次函数与y=2x+m的图象相交于,则关于的不等式的解集是__.17.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.18.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为16,则▱ABCD的两条对角线的和是______三、解答题(共78分)19.(8分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.(1)当点E在正方形ABCD内部时,①根据题意,在图1中补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.(2)当点B,D,G在一条直线时,若AD=4,DG=,求CE的长.(可在备用图中画图)20.(8分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:,,;以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.21.(8分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.(1)用关于x的代数式分别表示无盖纸盒的长和宽.(2)若纸盒的底面积为600cm2,求纸盒的高.(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.22.(10分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.23.(10分)如图,在平面直角坐标系中,矩形的顶点、在坐标轴上,点的坐标为点从点出发,在折线段上以每秒3个单位长度向终点匀速运动,点从点出发,在折线段上以每秒4个单位长度向终点匀速运动.两点同时出发,当其中一个点到达终点时,另一个点也停止运动,连接.设两点的运动时间为,线段的长度的平方为,即(单位长度2).(1)当点运动到点时,__________,当点运动到点时,__________;(2)求关于的函数解析式,并直接写出自变量的取值范围.24.(10分)如图,已知直线过点,.(1)求直线的解析式;(2)若直线与轴交于点,且与直线交于点.①求的面积;②在直线上是否存在点,使的面积是面积的2倍,如果存在,求出点的坐标;如果不存在,请说明理由.25.(12分)某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:每人销售量/件1800510250210150120人数113532(1)这15位营销人员该月销售量的中位数是______,众数是______;(2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由.26.如图,是一位护士统计一位病人的体温变化图,请根据统计图回答下列问题:(1)病人的最高体温是达多少?(2)什么时间体温升得最快?(3)如果你是护士,你想对病人说____________________.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.2、B【解析】解:根据题意:当x=﹣1时,方程左边=a﹣b+c,而a+c=b,即a﹣b+c=0,所以当x=﹣1时,方程ax2+bx+c=0成立.故x=﹣1是方程的一个根.故选B.3、D【解析】
先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P(m﹣3,m﹣1)在第二象限,∴,解得:1<m<3,故选:D.【点睛】本题考查不等式组的解法,在数轴上表示不等式组的解集等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.4、C【解析】
将y=ax-a化为y=a(x-1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A、B、D中的图象都不过点(1,0),所以C项图象正确.故本题正确答案为C.【点睛】本题主要考查一次函数的图象和一次函数的性质.5、A【解析】
根据一次函数的图象经过的象限与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、三象限,
∴k>0,b>0.
故选A.【点睛】本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.6、B【解析】
由平行四边形的邻角互补得到的度数,由平行四边形的对角相等求.【详解】解:因为:平行四边形,所以:,,又因为:所以:,解得:,所以:.故选B.【点睛】本题考查的是平行四边形的性质,掌握平行四边形的角的性质是解题关键.7、C【解析】
根据分母不为零分式有意义,可得答案.【详解】解:由题意,得
2019-x≠0,
解得x≠2019,
故选:C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.8、C【解析】
把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.【详解】解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,∴可列方程为:(31﹣x)(10﹣x)=2.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.9、D【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选D.【点睛】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.10、B【解析】
由折叠的性质可得AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED【详解】解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,∴AD=AD'=12AC,∠D=∠AD'E=90°,∠DAE=∠∴∠ACD=30°,∴∠DAC=60°,且∠DAE=∠CAE∴∠DAE=∠CAE=30°,且∠D=90°∴∠AED=60°故选:B.【点睛】本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.11、D【解析】试题分析:根据中心对称图形的概念:绕某点旋转180°,能够与原图形完全重合的图形.可知①不是中心对称图形;②不是中心对称图形;③是中心对称图形;④是中心对称图形.故选D.考点:中心对称图形12、C【解析】
根据二次根式的被开方数是非负数列出不等式x-1≥0,通过解该不等式即可求得x的取值范围.【详解】解:根据题意,得x-1≥0,
解得,x≥1.
故选:C.【点睛】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题(每题4分,共24分)13、25°【解析】
由等腰三角形性质得∠ACB=∠B=由平行四边形性质得∠DAE=∠ACB=65〬,由垂直定义得∠ADE=90〬-∠DAE=90〬-65〬.【详解】因为,,所以,∠ACB=∠B=因为,四边形ABCD是平行四边形,所以,AD∥BC,所以,∠DAE=∠ACB=65〬,又因为,,所以,∠ADE=90〬-∠DAE=90〬-65〬=25〬.故答案为25〬【点睛】本题考核知识点:平行四边形,等腰三角形,垂直定义.解题关键点:由所求推出必知,逐步解决问题.14、答案为甲【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:=83(分),=82(分);经计算知S甲2=6,S乙2=1.S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故答案为甲【点睛】本题主要考查平均数、方差等知识,解题的关键是记住:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15、﹣1≤m≤1.【解析】
分别把点,代入直线,求得m的值,由此即可判定的取值范围.【详解】把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.故答案为:﹣1≤m≤1.【点睛】本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.16、x>-1【解析】
观察图象,找出直线y=-x+2在直线y=2x+m的下方时对应的x的取值范围即可.【详解】从图象可以看出,当时,直线y=-x+2在直线y=2x+m的下方,所以的解集为:x>-1,故答案为:.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值是解答本题的关键.17、【解析】
先根据得出,再求出的度数,由即可得出结论.【详解】,,,,,.故答案为:.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.18、1【解析】
根据平行四边形对角线互相平分,对边相等可得CD=AB=5,AC=2CO,BD=2DO,再由△OCD的周长为16可得CO+DO=16﹣5=11,然后可得答案.【详解】解:∵四边形ABCD是平行四边形,∴CD=AB=5,AC=2CO,BD=2DO,∵△OCD的周长为16,∴CO+DO=16﹣5=11,∴AC+BD=2×11=1,故答案为1.【点睛】此题主要考查了平行四边形的性质,关键是掌握平行四边形对角线互相平分,对边相等.三、解答题(共78分)19、(1)①见解析;②AG=CE,AG⊥CE,理由见解析;(2)CE的长为或【解析】
(1)①根据题意补全图形即可;
②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,延长CE分别交AG、AD于点F、H,判断出∠AFH=∠HDC=90°即可得出结论;
(2)分两种情况,①当点G在线段BD的延长线上时,②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【详解】解:(1)当点E在正方形ABCD内部时,①依题意,补全图形如图1:②AG=CE,AG⊥CE.
理由:
在正方形ABCD,
∴AD=CD,∠ADC=90°,
∵由DE绕着点D顺时针旋转90°得DG,
∴∠GDE=∠ADC=90°,GD=DE,
∴∠GDA=∠EDC
在△AGD和△CED中,,
∴△AGD≌△CED,
∴AG=CE.
如图2,延长CE分别交AG、AD于点F、H,
∵△AGD≌△CED,
∴∠GAD=∠ECD,
∵∠AHF=∠CHD,
∴∠AFH=∠HDC=90°,
∴AG⊥CE.
(2)①当点G在线段BD的延长线上时,如图3所示.
过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADB=∠GDM=45°.
∵GM⊥AD,DG=∴MD=MG=2,
∴AM=AD+DM=6
在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,
∴CE=AG=
②当点G在线段BD上时,如图4所示,
过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADG=45°
∵GM⊥AD,DG=∴MD=MG=2,
∴AM=AD-MD=2
在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,
∴CE=AG=.故CE的长为或.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出△AGD≌△CED,解(2)的关键是构造直角三角形,是一道中考常考题.20、(1);(2).【解析】试题分析:(1)分式的分子和分母都乘以,即可求出答案;把2看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)①②;(2)原式==.考点:分母有理化.21、(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为1.【解析】
根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,根据面积长宽,列出关于x的一元二次方程,解之即可,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.【详解】根据题意得:长,宽,根据题意得:整理得:解得:舍去,,纸盒的高为5cm,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,,,解得:,根据题意得:,,y随着x的增大而减小,当取到最大值时,y取到最小值,即当时,,x的取值范围为:,y的最小值为1.【点睛】本题考查二次函数的应用,一元二次方程的应用,解题的关键:(2)根据等量关系列出一元二次方程(3)根据数量关系列出不等式和反比例函数并利用反比例函数的增减性求最值.22、见解析【解析】
根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,进而证明ADCF是菱形.【详解】证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=BC=DC,∴四边形ADCF是菱形.【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,利用直角三角形的性质解决问题,属于中考常考题型.23、(1)1,;(2).【解析】
(1)由点的坐标为可知OA=3,OB=4,故)当点运动到点时,;当点运动到点时,t=;(2)分析题意,d与t的函数关系应分为①当时,利用勾股定理在中,,,.计算即可得:.②当时,过点作,垂足为,利用勾股定理:在中,,,故而.即.③当时,利用勾股定理:在中,,,所以.即.【详解】解:(1)1,;(2)①如图1,当时,∵在中,,,∴.即.②如图2,当时,过点作,垂足为,∵四边形为矩形,∴.∴四边形为矩形.∴.∴.∴.∴在中,,,∴.即.③如图3,当时,∵在中,,,∴.即.综上所述,.【点睛】本题考查了动点问题与长度关系,灵活运用勾股定理进行解题是解题的关键.24、(1);(2)6;(3)或【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中学校德育工作汇报总结
- 福建省福州鼓楼区2024届高考语文必刷试卷含解析
- 毕博-世界知名科技园区研究课件
- 辅警公共基础知识练习题(二)
- 油性皮肤皮肤护理课件
- 血小板减少护理查房
- 2024年小型吊车租赁协议3篇
- 陈氏家谱字派
- 腹腔镜入门培训班课件
- 2024年全球分销商合作框架2篇
- 电路分析基础(浙江大学)智慧树知到期末考试答案章节答案2024年浙江大学
- 信息化运维服务合同(模板)
- 《民用航空安全保卫条例》考试复习题库(含答案)
- 深圳2024年广东深圳市光明区人民检察院招聘一般专干笔试历年典型考题及考点附答案解析
- 高中数学选择性必修一课件第二章 直线和圆的方程章末复习课(1)(人教A版)
- 旧房换瓦安全协议书范本版
- 2024年南充检察系统和人员历年【重点基础提升】模拟试题(共500题)附带答案详解
- 2023年福建农商银行招聘考试真题
- 传染病医院传染病病例报告分析
- 劳动教育智慧树知到期末考试答案章节答案2024年温州医科大学
- 干部选拔任用考察方案
评论
0/150
提交评论