




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省蒙自市2024届八年级下册数学期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在一次数学测试中,某小组的5名同学的成绩(百分制,单位:分)如下:80,98,98,83,96,关于这组数据说法错误的是()A.众数是98 B.平均数是91C.中位数是96 D.方差是622.如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是(
)A.2 B.2 C. D.43.已知□ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.284.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形 B.九边形 C.十边形 D.十二边形5.方程中二次项系数一次项系数和常数项分别是()A.1,-3,1 B.-1,-3,1 C.-3,3,-1 D.1,3,-16.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x
-2
0
1
y
3
p
0
A.1 B.-1 C.3 D.-37.用配方法解方程x2﹣2x﹣1=0,原方程应变形为()A.(x﹣1)2=2B.(x+1)2=2C.(x﹣1)2=1D.(x+1)2=18.如图,这个图案是3世纪我国汉代的赵爽在注释《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以围成一个大正方形,中空的部分是一个小正方形(黄实),赵爽利用弦图证明的定理是()A.勾股定理 B.费马定理 C.祖眇暅 D.韦达定理9.如果一组数据,,0,1,x,6,9,12的平均数为3,则x为A.2 B.3 C. D.110.下列因式分解正确的是()A.x3﹣x=x(x2﹣1) B.﹣a2+6a﹣9=﹣(a﹣3)2C.x2+y2=(x+y)2 D.a3﹣2a2+a=a(a+1)(a﹣1)11.如图,等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是()①OD=OE;②;③;④△BDE的周长最小值为9,A.1个 B.2个 C.3个 D.4个12.下列分式是最简分式的是()A. B. C. D.二、填空题(每题4分,共24分)13.若正n边形的内角和等于它的外角和,则边数n为_____.14.如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD落在同一平面内),A、E两点间的距离为______▲_____.15.如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.16.已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是____.17.以正方形ABCD一边AB为边作等边三角形ABE,则∠CED=_____.18.在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.三、解答题(共78分)19.(8分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,-2),N(,-1)中,是“垂点”的点为;(2)点M(-4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE的最小值为.20.(8分)如图,在平面直角坐标系xOy中,直线的表达式为,点A,B的坐标分别为(1,0),(0,2),直线AB与直线相交于点P.(1)求直线AB的表达式;(2)求点P的坐标;(3)若直线上存在一点C,使得△APC的面积是△APO的面积的2倍,直接写出点C的坐标.21.(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.22.(10分)如图,DE是△ABC的中位线,延长DE至R,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=DC.23.(10分)(1)计算:(+5)(-5).(2)计算.24.(10分)如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形.(2)当点E从A点运动到C点时;①求证:∠DCG的大小始终不变;②若正方形ABCD的边长为2,则点G运动的路径长为.25.(12分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.(1)求证:△BFO≌△DEO;(2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;(3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.26.如图,在中,,点、分别在边、上,且,,点在边上,且,联结.(1)求证:四边形是菱形;(2)如果,,求四边形的面积.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据数据求出众数、平均数、中位数、方差即可判断.【详解】A.98出现2次,故众数是98,正确B.平均数是=91,正确;C.把数据从小到大排序:80,83,96,98,98,故中位数是96,正确故选D.【点睛】此题主要考查统计调查的应用,解题的关键是熟知众数、平均数、中位数、方差的求解.2、B【解析】
根据直线解析式可得OA和OB长度,利用勾股定理可得AB长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB.【详解】当x=0时,y=2∴点B(0,2)当y=0时,-x+2=0解之:x=2∴点A(2,0)∴OA=OB=2∵点C在线段OD的垂直平分线上∴OC=CD∵△OBC和△OAD的周长相等,∴OB+OC+BC=OA+OD+AD∴OB+BC+CD=OA+OD+ADOB+BD=OA+OD+AD即OB+AB+AD=OB+OD+AD∴AB=OD在Rt△AOB中AB=OD=故选B【点睛】本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理.3、B【解析】
根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解【详解】∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵平行四边形ABCD的周长是32∴2(AB+BC)=32∴BC=12故正确答案为B【点睛】此题主要考查平行四边形的性质4、C【解析】
设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.【点睛】本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.5、A【解析】
先把方程化为一般形式,然后可得二次项系数,一次项系数及常数项.【详解】解:把方程转化为一般形式得:x2−3x+1=0,∴二次项系数,一次项系数和常数项分别是1,−3,1.故选:A.【点睛】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6、A【解析】设一次函数的解析式为y=kx+b,将表格中的对应的x,y的值(-2,3),(1,0)代入得:,解得:.∴一次函数的解析式为y=-x+1.当x=0时,得y=1.故选A.7、A【解析】分析:先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全公式表示即可.详解:x1﹣1x=1,x1﹣1x+1=1,(x﹣1)1=1.故选A.点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8、A【解析】
根据图形,用面积法即可判断.【详解】如图,设大正方形的边长为c,四个全等的直角三角形的两个直角边分别为a,b故小正方形的边长为(b-a)∴大正方形的面积为c2=4×化简得【点睛】此题主要考查勾股定理的性质,解题的关键是根据图像利用面积法求解.9、D【解析】
根据算术平均数的公式:可得:,进而可得:,解得:x=1.【详解】因为一组数据,,0,1,x,6,9,12的平均数为3,所以,所以,所以x=1.故选D.【点睛】本题主要考查算术平均数的计算公式,解决本题的关键是要熟练掌握算术平均数的计算公式.10、B【解析】
根据提公因式法和公式法进行分解因式即可判断.【详解】x3﹣x=x(x2﹣1)=x(x+1)(x-1),故A错误;﹣a2+6a﹣9=﹣(a﹣3)2,故B正确;x2+y2不能用完全平方公式进行因式分解,故C错误;a3﹣2a2+a=a(a2-2a+1)=a(a-1)2,故D错误.故选:B【点睛】本题考查的是因式分解,熟练掌握提公因式法及平方差公式、完全平方公式是关键.11、B【解析】
连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=6+DE=OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】解:连接OB、OC,如图,
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵点O是等边△ABC的内心,
∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠OCB=30°,
∴∠BOC=120°,即∠BOE+∠COE=120°,
而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE,
在△BOD和△COE中,,∴△BOD≌△COE(ASA),
∴BD=CE,OD=OE,①正确;
∴S△BOD=S△COE,
∴四边形ODBE的面积=S△OBC=S△ABC=××62=,③错误作OH⊥DE,如图,则DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°,
∴OH=OE,HE=OH=OE,
∴DE=OE,
∴S△ODE=•OE•OE=OE2,
即S△ODE随OE的变化而变化,
而四边形ODBE的面积为定值,
∴S△ODE≠S△BDE;②错误;
∵BD=CE,
∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=6+DE=6+OE,
当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,
∴△BDE周长的最小值=6+3=9,④正确.
故选B.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质以及三角形面积的计算等知识;熟练掌握旋转的性质和等边三角形的性质,证明三角形全等是解题的关键.12、C【解析】
解:A、=﹣1;B、;C、分子、分母中不含公因式,不能化简,故为最简分式;D、故选C.二、填空题(每题4分,共24分)13、1【解析】
设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.【详解】解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°,解得,n=1.故答案为:1.【点睛】本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.14、1【解析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解答:解:如图,矩形ABCD的对角线交于点F,连接EF,AE,则有AF=FC=EF=FD=BF.∵∠ADB=30°,∴∠CFD=∠EFD=∠AFB=60°,△AFE,△AFB都是等边三角形,有AE=AF=AB=1.15、1﹣1【解析】
取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.【详解】如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.故答案为11.【点睛】本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.16、10【解析】试题分析:由题意可知这组数据的众数为10,再根据平均数公式即可求得x的值,最后根据中位数的求解方法求解即可.解:由题意得这组数据的众数为10∵数据10,10,x,8的众数与它的平均数相等∴,解得∴这组数据为12,10,10,8∴这组数的中位数是10.考点:统计的应用点评:统计的应用是初中数学的重点,是中考必考题,熟练掌握各种统计量的计算方法是解题的关键.17、30°或150°.【解析】
等边△ABE的顶点E可能在正方形外部,也可能在正方形内部,因此分两种情况画出图形进行求解即可.【详解】分两种情况:①当点E在正方形ABCD外侧时,如图1所示:∵四边形ABCD是正方形,△ABE是等边三角形∴∠ABC=90°,BC=BE=AB,∠ABE=∠AEB=60°,∴∠CBE=∠CBA+∠ABE=90°+60°=150°,∵BC=BE,∴∠BCE═∠BEC=15°,同理可得∠EDA═∠DEA=15°,∴∠CED=∠AEB﹣∠CEB﹣∠DEA=60°﹣15°﹣15°=30°;②当点E在正方形ABCD内侧时,如图2所示:∵∠EAB=∠AEB=60°,∠BAC=90°,∴∠CAE=30°,∵AC=AE,∴∠ACE=∠AEC=75°,同理∠DEB=∠EDB=75°,∴∠CED=360°﹣60°﹣75°﹣75°=150°;综上所述:∠CED为30°或150°;故答案为:30°或150°.【点睛】本题考查了正方形的性质及等边三角形的性质,正确地进行分类,熟练掌握相关的性质是解题的关键.18、甲【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:由于S2甲<S乙2,则成绩较稳定的演员是甲.故答案为甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共78分)19、(1)Q;(2)-;(3)(-4,),(-,4);(4)1【解析】
(1)根据“垂点”的意义直接判断即可得出结论;(2)根据“垂点”的意义建立方程即可得出结论;(3)根据“垂点”的意义和矩形的面积建立方程即可得出结论;(4)先确定出直线EF的解析式,利用“垂点”的意义建立方程,利用非负性即可确定出m的范围,即可得出结论.【详解】解:(1)∵P(1,2),∴1+2=3,1×2=2,∵2≠3,∴点P不是“垂点”,∵Q(2,﹣2),∴2+2=4,2×2=4,∴Q是“垂点”.∵N(,﹣1),∴+1=×1=,∵,∴点N不是“垂点”,故答案为Q;(2)∵点M(﹣4,m)是第三象限的“垂点”,∴4+(﹣m)=4×(﹣m),∴m=﹣,故答案为﹣;(3)设“垂点”的坐标为(a,b),∴﹣a+b=﹣ab,∵“垂点矩形”的面积为,∴﹣ab=.即:﹣a+b=﹣ab=,解得:a=﹣4,b=或a=﹣,b=4,∴“垂点”的坐标为(﹣4,)或(﹣,4),故答案为(﹣4,)或(﹣,4),.(4)设点E(m,0)(m>0),∵四边形EFGH是正方形,∴F(0,m),y=﹣x+m.设边EF上的“垂点”的坐标为(a,﹣a+m),∴a+(﹣a+m)=a(﹣a+m)∴a2﹣am=﹣m,∴(a﹣)2=≥0,∴m2﹣4m=m(m﹣4)≥0,∵m>0,∴m﹣4≥0,∴m≥4,∴m的最小值为4,∴EG的最小值为2m=1,故答案为1.【点睛】本题是四边形的综合题,主要考查了正方形的性质,矩形的面积公式,理解新定义和应用新定义的能力,解答本题的关键是用方程的思想解决问题.20、(1)y=-1x+1;(1)P的坐标为(1,-1);(3)(3,0),(1,-4).【解析】【分析】(1)用待定系数法求函数的解析式;(1)由两个解析式构成方程组,解方程组可得交点的坐标;(3)点P可能在P的上方或下方,结合图形进行分析计算.【详解】解:(1)设直线AB的表达式为y=kx+b.由点A,B的坐标分别为(1,0),(0,1),可知解得所以直线AB的表达式为y=-1x+1.(1)由题意,得解得所以点P的坐标为(1,-1).(3)(3,0),(1,-4).【点睛】本题考核知识点:一次函数的解析式,交点.解题关键点:理解一次函数的性质.21、(1)1:3;(1)见解析;(3)5:3:1.【解析】
(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.22、(1)证明见解析;(2)证明见解析.【解析】
(1)由三角形中位线定理可得,,由,可得,即可证四边形是平行四边形;(2)由平行四边形的性质可得,可得.【详解】证明:(1)是的中位线,,,,且四边形是平行四边形;(2)四边形是平行四边形,且【点睛】本题主要考查了平行四边形的判定和性质,以及三角形中位线定理,关键是掌握对角线互相平分的四边形是平行四边形,两组对边分别平行的四边形是平行四边形.23、(1)-22;(2)2【解析】
(1)直接利用二次根式的乘法运算法则计算得出答案;(2)首先化简二次根式,进而计算得出答案.【详解】解:(1)原式=3﹣25=﹣22;(2)原式=2﹣=2.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.24、(1)详见解析;(2)①详见解析;②【解析】
(1)要证明矩形DEFG为正方形,只需要证明它有一组临边(DE和EF)相等即可,而要证明两条线段相等,需证明它们所在的三角形全等,如下图本小题的关键是证明△EMF≌△END,∠MEF=∠NED可用等角的余角证明,EM=EN可用角平分线上的点到角两边距离相等,∠EMF和∠END为一组直角相等,所以可以用ASA证明它们全等;(2)此类题,前面的问题是给后面做铺垫,第一问已经证明四边形DEFG为正方形,结合第一问我们很容易发现并证明△ADE≌△CDG,从而得到∠DCG=∠CAD=45°;(3)当当E点在A处时,点G在C处;当E点在C处时,点G在AD的延长线上,并且AD=DG,以CD为边作正方形,我们会发现G点的运动轨迹刚好是正方形的对角线,它的长度等于.【详解】证明:(1)作EM⊥BC,EN⊥CD,∵四边形ABCD为正方形∴∠DCB=90°,∠ACB=∠ACD=45°又∵EM⊥BC,EN⊥CD,∴EM=EN(角平分线上的点到角两边距离相等),∠MEN=90°,∴∠MEF+∠NEF=90°,∵四边形DEFG为矩形,∴∠DEF=90°,∴∠NED+∠NEF=90°,∴∠MEF=∠NED,在△EMF和△END中∵∴△EMF≌△END,∴DE=DF,∴矩形DEFG为正方形;(2)①证明:∵正方形ABCD、DEFG∴AD=CD,ED=GD∵∠ADE+∠DEC=90°,∠CDG+∠EDC=90°∴∠ADE=∠CDG在△ADE和△CDG中,∵AD=CD,∠ADE=∠CDG,ED=GD∴△ADE≌△CDG∴∠DCG=∠EAD=45°∴∠DCG的大小始终保持不变②以CD为边作正方形DCPQ,连接QC∴∠DCQ=45°,又∵∠DCG=45°∴C、G、Q在同一条直线上,当E点在A处时,点G在C处;当E点在C处时,点G在Q处,∴G点的运动轨迹为QC,∵正方形ABCD的边长为2所以QC=,即点G运动的路径长为【点睛】(1)本题考查正方形的判定定理,有一组临边相等的矩形为正方形,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论