2024年四川成都锦江区八年级数学第二学期期末统考模拟试题含解析_第1页
2024年四川成都锦江区八年级数学第二学期期末统考模拟试题含解析_第2页
2024年四川成都锦江区八年级数学第二学期期末统考模拟试题含解析_第3页
2024年四川成都锦江区八年级数学第二学期期末统考模拟试题含解析_第4页
2024年四川成都锦江区八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年四川成都锦江区八年级数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下列叙述正确的是()A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查2.已知二次函数的与的部分对应值如下表:

-1

0

1

3

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有()A.1个 B.2个 C.3个 D.1个3.如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是()A.平行四边形→菱形→平行四边形→矩形→平行四边形B.平行四边形→矩形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→正方形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.5.若五箱苹果的质量(单位:kg)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是()A.18和18 B.19和18 C.20和18 D.20和196.使有意义的x的取值范围是()A.x≤3 B.x<3 C.x≥3 D.x>37.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.且 C.且 D.8.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.129.下列曲线中能表示y是x的函数的为()A. B. C. D.10.下列各曲线中哪个不能表示y是x的函数的是()A. B. C. D.11.已知点的坐标是,点与点关于轴对称,则点的坐标为()A. B. C. D.12.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. B.3 C.1 D.二、填空题(每题4分,共24分)13.若有意义,则的取值范围是_______14.如图,Rt△中,分别是的中点,平分,交于点.若,,则的长是________.15.已知直线,则直线关于轴对称的直线函数关系式是__________.16.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.17.已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x﹣2﹣10123y﹣101234那么,不等式mx+n<0的解集是_____.18.因式分解:_________.三、解答题(共78分)19.(8分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.20.(8分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.(1)求证:CM⊥EF.(2)设正方形ABCD的边长为2,若五边形BCDEF的面积为,请直接写出CM的长.21.(8分)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.22.(10分)如图,O是矩形ABCD对角线的交点,作,,DE,CE相交于点E,求证:四边形OCED是菱形.23.(10分)记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).(1)写出y关于x的函数表达式及自变量x的取值范围;(2)在如图直角坐标系中,用描点法画出所求函数图象;(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.24.(10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?25.(12分)如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.26.(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是________;(2)根据下面四个算式:5232=(5+3)×(53)=8×2;11252=(11+5)×(115)=16×6=8×12;15232=(15+3)×(153)=18×12=8×27;19272=(19+7)×(197)=26×12=8×1.请你再写出两个(不同于上面算式)具有上述规律的算式;(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:A、总体是25000名学生的身高情况,故A错误;B、1200名学生的身高是总体的一个样本,故B正确;C、每名学生的身高是总体的一个个体,故C错误;D、该调查是抽样调查,故D错误.故选B.2、B【解析】

解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=,故②错误;当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×=3,小于3+1=1,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质3、A【解析】

根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.【详解】解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,

当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,

当15°<∠EOD<75°时,四边形AFCE为平行四边形,

当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,

当75°<∠EOD<105°时,四边形AFCE为平行四边形,

故选A.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.4、A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.5、B【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.故选:B.【点睛】本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.6、C【解析】分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.详解:∵式子有意义,∴x-1≥0,解得x≥1.故选C.点睛:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.7、B【解析】

由方程根的情况,根据判别式可得到关于的不等式,则可求得取值范围;【详解】解:因为一元二次方程有两个不相等的实数根,所以>0,且,所以>0,解得:<,又因为,所以,所以且,故选B.【点睛】本题考查利用一元二次方程的根的判别式求字母的取值范围,同时考查一元二次方程定义中二次项系数不为0,掌握知识点是解题关键.8、C【解析】

此题涉及的知识点是旋转的性质,由旋转的性质,再根据∠BAC=30°,旋转60°,可得到∠BAC1=90°,结合勾股定理即可求解.【详解】解:∵△ABC绕点A逆时针旋转60°得到△AB1C1,∴∠BAC1=∠BAC+∠CAC1=30°+60°=90°,AC1=AC=6,在RtBAC1中,∠BAC=90°,AB=8,AC1=6,∴,故本题选择C.【点睛】此题重点考查学生对于旋转的性质的理解,也考查了解直角三角形,等腰三角形的性质和含30度角的直角三角形的性质,熟练掌握以上知识点是解题的关键.9、D【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断.【详解】A、B、C选项,一个x的值对应有两个y值,故不能表示y是x的函数,错误,D选项,x的每一个值,y都有唯一确定的值与它对应,正确,故选D.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.10、D【解析】

在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【详解】解:显然A、B、C三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D、对于x>0的部分值,y都有二个或三个值与之相对应,则y不是x的函数;故选:D.【点睛】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.11、B【解析】

根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点A关于y轴对称的点的坐标是B,故选:B.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.12、A【解析】

首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故选A.二、填空题(每题4分,共24分)13、【解析】

根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:代数式有意义,,解得:.故答案为:.【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.14、1;【解析】

依据题意,DE是△ABC的中位线,则DE=5,根据平分线和角平分线的性质,易证△BDF是等腰三角形,BD=DF,D是BC中点,DF=,由EF=DE-DF,即可解出EF.【详解】∵D、E点是AC和BC的中点,则DE是中位线,∴DE∥AB,且DE=AB=5∴∠ABF=∠BFD又BF平分∠ABC,∴∠ABF=∠FBD∴∠BFD=∠FBD∴△FDB是等腰三角形∴DF=BD又∵D是BC中点,∴BD=3∴DF=3∴EF=DE-DF=5-3=1故本题答案为1.【点睛】本题考查了平分线的性质、角平分线的性质、等腰三角形的判定及性质以及中位线的性质,熟练掌握相关知识点事解决本题的关键.15、【解析】

直接根据关于轴对称的点纵坐标不变横坐标互为相反数进行解答即可.【详解】解:关于轴对称的点纵坐标不变,横坐标互为相反数,直线与直线关于轴对称,则直线的解析式为.故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于轴对称的点的坐标特点是解答此题的关键.16、56°【解析】

根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.17、x<﹣1【解析】

由表格得到函数的增减性后,再得出时,对应的的值即可.【详解】当时,,根据表可以知道函数值随的增大而增大,故不等式的解集是.故答案为:.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间联系.理解一次函数的增减性是解决本题的关键.18、【解析】

直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.三、解答题(共78分)19、(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q的速度是0.5cm/s;②t=.【解析】

(1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;

(2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;

(3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P在AB上,根据平行四边形的性质求出即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.【点睛】考查了矩形的性质,平行四边形的性质和判定,菱形的判定和性质,勾股定理,全等三角形的性质和判定,线段垂直平分线性质等知识点的综合运用,用了方程思想,分类讨论思想.20、(1)见解析;(2)【解析】

(1)连结CE,CF,知道AE=AF,可得CE=CF,即可证明;(2)正方形ABCD的边长为2,若五边形BCDEF的面积为,则可算出△AEF的面积,从而求出CM【详解】(1)证明:连结CE,CF∵四边形ABCD是正方形∴∠B=∠D=90°,BC=CDAB=AD又AE=AF∴BE=DF∴△CBE≌△CDF(SAS)∴CE=CF而M是EF中点∴CM⊥EF(等腰三角形三线合一)(2)连接AM,由(1)可知,AMC三点共线,正方形ABCD的边长为2,若五边形BCDEF的面积为,则△AEF的面积为,则AC=,AE=AF=,∴EF=,AM=,则CM=-=【点睛】熟练掌握正方形内边角的转换计算和辅助线作法是解决本题的关键21、(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;(2)工程预算的施工费用不够,需追加预算4万元.【解析】

(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;

(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【详解】(1)解:设乙队单独完成这项工程需要天,则甲队单独完成需要填;解得:经检验,x=90是原方程的根.则(天)答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(+)=1.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.22、见解析【解析】

首先判断出四边形OCED是平行四边形,而四边形ABCD是矩形,由OC、OD是矩形对角线的一半,知OC=OD,从而得出四边形OCED是菱形.【详解】证明:∵DE∥AC,CE∥DB,

∴四边形OCED是平行四边形,

又∵四边形ABCD是矩形,

∴AC=BD,OC=OA=AC,OB=OD=BD,

∴OC=OD,

∴平行四边形OCED是菱形(一组邻边相等的平行四边形是菱形).【点睛】此题主要考查了菱形的判定,关键是掌握菱形的判定方法:

①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);

②四条边都相等的四边形是菱形.

③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).23、(1)y(x>0);(2)答案见解析;(3)8.【解析】

(1)根据平行四边形的面积公式,列出函数关系式即可;(2)利用描点法画出函数图象即可;(3)如图作DE⊥BC交BC的延长线于E.解直角三角形求出CD即可.【详解】(1)由题意,xy=18,所以y(x>0);(2)列表如下:函数图象如图所示:(3)如图作DE⊥BC交BC的延长线于E,∵BC=4,∴DE,∵BD,∴BE6,∴EC=2,∴CD,∴此平行四边形的周长=8.【点睛】本题考查了反比例函数的性质、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题24、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】

(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有480x+10解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论