2024年江苏省灌云县联考数学八年级下册期末质量跟踪监视试题含解析_第1页
2024年江苏省灌云县联考数学八年级下册期末质量跟踪监视试题含解析_第2页
2024年江苏省灌云县联考数学八年级下册期末质量跟踪监视试题含解析_第3页
2024年江苏省灌云县联考数学八年级下册期末质量跟踪监视试题含解析_第4页
2024年江苏省灌云县联考数学八年级下册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省灌云县联考数学八年级下册期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点C与C′的距离为()A. B. C.1 D.﹣12.不等式的解集是()A. B. C. D.3.方程x(x-6)=0的根是()A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=04.甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.下列运算中正确的是()A.+= B.C. D.6.在△ABC中,a、b、c分别是∠A,∠B,∠C的对边,若(a﹣2)2+|b﹣2|+=0,则这个三角形一定是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.钝角三角形7.要使分式有意义,应满足的条件是()A. B. C. D.8.如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形()A.4个 B.5个 C.8个 D.9个9.如图,在中,,,,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为()A.1 B.2 C.2.5 D.410.一组数据3,4,4,5,5,5,6,6,7众数是()A.4 B.5 C.6 D.7二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=13BD,连接DM、DN、MN.若AB=6,则DN=___12.若二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上,则m=.13.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.14.已知直线与x轴的交点在、之间(包括、两点),则的取值范围是__________.15.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.16.如图,以Rt△ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则△ABC的面积为_____.17.如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是.18.化简:=.三、解答题(共66分)19.(10分)在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确定正方形”.如图为点A,B的“确定正方形”的示意图.(1)如果点M的坐标为(0,1),点N的坐标为(3,1),那么点M,N的“确定正方形”的面积为___________;(2)已知点O的坐标为(0,0),点C为直线上一动点,当点O,C的“确定正方形”的面积最小,且最小面积为2时,求b的值.(3)已知点E在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P(m,0),点F在直线上,若要使所有点E,F的“确定正方形”的面积都不小于2,直接写出m的取值范围.20.(6分)如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?21.(6分)如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.(1)如图1,当F在直线y=x上时,函数图象过点B,求线段OF的长.(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.①求证:CD=2AE.②若AE+CD=DE,求k.③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.22.(8分)已知一次函数图象经过和两点(1)求此一次函数的解析式;(2)若点在函数图象上,求的值.23.(8分)在平面直角坐标系中,三个顶点的坐标分别是,,.(1)将绕点旋转,请画出旋转后对应的;(2)将沿着某个方向平移一定的距离后得到,已知点的对应点的坐标为,请画出平移后的;(3)若与关于某一点中心对称,则对称中心的坐标为_____.24.(8分)化简求值:(1+)÷,其中x=﹣1.25.(10分)计算:(+)×26.(10分)如图,中,且是的中点(1)求证:四边形是平行四边形。(2)求证:四边形是菱形。(3)如果时,求四边形ADBE的面积(4)当度时,四边形是正方形(不证明)

参考答案一、选择题(每小题3分,共30分)1、D【解析】

连接CC′,AE,延长AE交CC′于F,由正方形性质可证明△ADE≌△AEB′,所以DE=B′E,根据∠BAB′=30°可知∠DAE=∠EAB′=30°,即可求出DE的长度,进而求出CE的长度,根据∠FEC=60°可知CF的长度,即可求出CC′的长度.【详解】连接CC′,AE,延长AE交CC′于F,∵正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,∴AD=AB′,∠ADE=∠AB′E=90°,AE=AE,∴△ADE≌△AEB′,∴∠DAE=∠EAB′,∵旋转角为30°,∴∠BAB′=30°,∴∠DAB′=60°,∴∠DAE=∠EAB′=30°,∴AE=2DE,∴AD2+DE2=(2DE)2,∴DE=,∴CE=1-,∵DE=EB′∴EC=EC′,∵∠DEA=∠AEB′=60°,∴∠FEC′=∠FEC=60°,∴∠FCE=30°,∴△FEC≌△FEC′,∴CF=FC′,∴EF⊥CC′,∴EF=CE=,∴CF==,∴CC′=2CF=,故选D.【点睛】本题考查旋转的性质,找出旋转后的边、角的对应等量关系是解题关键.2、C【解析】试题分析:移项得,,两边同时除以2得,.故选C.考点:解一元一次不等式.3、B【解析】

根据因式分解,原方程转化为x=0或x-6=0,然后解两个一次方程即可得答案.【详解】解:x(x-6)=0,x=0或x-6=0,∴x1=0,x2=6,故选B.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的解法是关键.4、A【解析】

比较方差的大小,即可判定方差最小的较为稳定,即成绩最稳的是甲同学.【详解】∵甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.43,1.13,0.90,1.68,∴,∴成绩最稳定的同学是甲.故选A.【点睛】此题主要考查利用方差,判定稳定性,熟练掌握,即可解题.5、D【解析】

根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.+=2+3=5,故A选项错误;B.=2,故B选项错误;C.,故C选项错误;D.,正确,故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6、C【解析】

根据非负数的性质列出方程,解出a、b、c的值后,再用勾股定理的逆定理进行判断.【详解】解:根据题意,得a-2=0,b-=0,c-2=0,解得a=2,b=,c=2,∴a=c,又∵,∴∠B=90°,∴△ABC是等腰直角三角形.故选C.【点睛】本题考查了非负数的性质和勾股定理的逆定理,属于基础题型,解题的关键是熟悉非负数的性质,正确运用勾股定理的逆定理.7、C【解析】

直接利用分式有意义的条件得出答案.【详解】要使分式有意义,

则x-1≠0,

解得:x≠1.

故选:C.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.8、D【解析】

首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB,又∵EF∥BC,GH∥AB,∴∴AB∥GH∥CD,AD∥EF∥BC,∴平行四边形有:□ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.故选D.【点睛】本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.9、A【解析】

作CG⊥DF于点G,由平移的性质可得AD=CF=2,∠ACB=∠F=30°,再由30°直角三角形的性质即可求得CF的值.【详解】如图,作CG⊥DF于点G,由平移知,AD=CF=2,∠ACB=∠F=30°,∴CG=CF=1,即点C到DF的距离为1.故选A.【点睛】本题考查了平移的性质及30°直角三角形的性质,正确作出辅助线,熟练利用平移的性质及30°直角三角形的性质是解决问题的关键.10、B【解析】

先把数据按大小排列,然后根据众数的定义可得到答案.【详解】数据按从小到大排列:3,4,4,5,5,5,6,6,7,数据5出现3次,次数最多,所以众数是5.故选B.【点睛】此题考查众数,难度不大二、填空题(每小题3分,共24分)11、1.【解析】试题分析:连接CM,根据三角形中位线定理得到NM=12CB,MN∥BC,又CD=13BD,可得MN=CD,又由MN∥BC,可得四边形DCMN是平行四边形,所以DN=CM,根据直角三角形的性质得到CM=考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.12、1【解析】试题分析:由二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,根据二次函数对称轴的公式x=-b-2m-1=0考点:二次函数对称轴点评:本题属于简单的公式应用题,相对来说比较简单,但是仍然要求学生对相应的公式牢记并理解,注意公式中各字母表示的含义。13、甲【解析】试题分析:当两人的平均成绩相同时,如果方差越小则说明这个人的成绩越稳定.14、【解析】

根据题意得到的取值范围是,则通过解关于的方程求得的值,由的取值范围来求的取值范围.【详解】解:直线与轴的交点在、之间(包括、两点),,令,则,解得,则,解得.故答案是:.【点睛】本题考查了一次函数图象与系数的关系.根据一次函数解析式与一元一次方程的关系解得的值是解题的突破口.15、y=x+3【解析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).16、32【解析】

在上截取,连接,根据、、、四点共圆,推出,证,推出,,得出等腰直角三角形,根据勾股定理求出,即可求出.由三角形面积公式即可求出Rt△ABC的面积.【详解】解:在上截取,连接,四边形是正方形,,,,、、、四点共圆,,在和中,,,,,,即是等腰直角三角形,由勾股定理得:,即.∴=4故答案为:32【点睛】本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,利用旋转模型构造三角形全等和等腰直角三角形是解此题的关键.17、1.【解析】

延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=xy,则S△OCB′=xy,由AB∥x轴,得点A(x-a,1y),由题意得1y(x-a)=1,从而得出三角形ABC的面积等于ay,即可得出答案.【详解】延长BC,交x轴于点D,设点C(x,y),AB=a,∵OC平分OA与x轴正半轴的夹角,∴CD=CB′,△OCD≌△OCB′,再由翻折的性质得,BC=B′C,∵双曲线

(x>0)经过四边形OABC的顶点A.

C,∴S△OCD=xy=1,∴S△OCB′=xy=1,由翻折变换的性质和角平分线上的点到角的两边的距离相等可得BC=B′C=CD,∴点A.

B的纵坐标都是1y,∵AB∥x轴,∴点A(x−a,1y),∴1y(x−a)=1,∴xy−ay=1,∵xy=1∴ay=1,∴S△ABC=ay=,∴SOABC=S△OCB′+S△AB′C+S△ABC=1++=1.故答案为:1.18、.【解析】试题分析:原式=.考点:二次根式的乘除法.三、解答题(共66分)19、(1)9;(2)OC⊥直线于点C;①;②;(3)【解析】

(1)求出线段MN的长度,根据正方形的面积公式即可求出答案;(2)根据面积求出,根据面积最小确定OC⊥直线于点C,再分情况分别求出b;(3)分两种情况:当点E在直线y=-x-2是上方和下方时,分别求出点P的坐标,由此得到答案.【详解】解:(1)∵M(0,1),N(3,1),∴MN∥x轴,MN=3,∴点M,N的“确定正方形”的面积为,故答案为:9;(2)∵点O,C的“确定正方形”面积为2,∴.∵点O,C的“确定正方形”面积最小,∴OC⊥直线于点C.①当b>0时,如图可知OM=ON,△MON为等腰直角三角形,可求,∴②当时,同理可求∴(3)如图2中,当正方形ABCD在直线y=-x-2的下方时,延长DB交直线y=-x-2于H,∴BH⊥直线y=-x-2,当BH=时,点E、F的“确定正方形”的面积的最小值是2,此时P(-6,0);如图3中,当正方形ABCD在直线y=-x-2的上方时,延长DB交直线y=-x-2于H,∴BH⊥直线y=-x-2,当BH=时,点E、F的“确定正方形”的面积的最小值是2,此时P(2,0),观察图象可知:当或时,所有点E、F的“确定正方形”的面积都不小于2【点睛】此题是一次函数的综合题,考查一次函数的性质,正方形的性质,正确理解题中的正方形的特点画出图象求解是解题的关键.20、14cm1【解析】

连接AC,利用勾股定理求出AC的长,在△ABC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.【详解】解:连接AC,

∵AD=4cm,CD=3cm,∠ADC=90°,

∴AC===5(cm)

∴S△ACD=CD•AD=6(cm1).

在△ABC中,∵51+111=131即AC1+BC1=AB1,

∴△ABC为直角三角形,即∠ACB=90°,

∴S△ABC=AC•BC=30(cm1).

∴S四边形ABCD=S△ABC-S△ACD

=30-6=14(cm1).

答:四边形ABCD的面积为14cm1.【点睛】本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式.掌握勾股定理及其逆定理,连接AC,说明△ABC是直角三角形是解决本题的关键.21、(1)OF=4;(2)①证明见解析;②k=;③96-16或36-4.【解析】

分析(1)由y=经过点B(2,4).,求出k的值,再利用F在直线y=x,求出m的值,最后利用勾股定理求解即可;(2)①利用反比例函数k的几何意义可求解;②Rt△EBD中,分别用n表示出BD、BE、DE,再利用勾股定理解答即可;③分三种情况讨论即可:OE=OD;OE=DE;OD=DE.详解:(1)∵F在直线y=x上∴设F(m,m)作FM⊥x轴∴FM=OM=m∵y=经过点B(2,4).∴k=8∴∴∴∴OF=4;(2)①∵函数的图象经过点D,E∴,∵OC=2,OA=4∴CO=2AE②由①得:CD=2AE∴可设:CD=2n,AE=n∴DE=CD+AE=3nBD=4-2n,BE=2-n在Rt△EBD,由勾股定理得:∴解得③CD=2c,AE=c情况一:若OD=DE∴∴∴情况二:若OE=DE∴∴情况三:OE=OD不存在.点睛:本题考查了反比例函数的性质,利用反比例函数的解析式求点的坐标,利用勾股定理得到方程,进而求出线段的长,注意解题时分类讨论的思想应用.22、(1)(2)【解析】

(1)用待定系数法,设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.

(2)将点(m,2)代入可得关于m的方程,解出即可.【详解】解:(1)设一次函数的解析式为,则有,解得:,一次函数的解析式为;(2)点在一次函数图象上,.【点睛】本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法求一次函数解析式.23、(1)见解析;(2)见解析;(3)【解析】

(1)延长BC到B1使B1C=BC,延长AC到A1使A1C=AC,从而得到△A1B1C1;

(2)利用点A1和A2的坐标特征得到平移的规律,然后描点得到△A2B2C2;

(3)利用关于原点对称的点的坐标特征进行判断.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2,如图所示;(3)∵,,,,,∴与关于原点对,对称中心坐标为,【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论